簡易檢索 / 詳目顯示

研究生: 余哲緯
Jhe-Wei Yu
論文名稱: 異質奈米結構量子點與摻雜量子點之合成與分析
Synthesis of Heterostructure and Transition Metal Doped Quantum Dots
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 曾堯宣
Yao-Hsuan Tseng
曾新華
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 147
中文關鍵詞: 異質結構摻雜量子點
外文關鍵詞: heterostructure, doped, quantum dots
相關次數: 點閱:259下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文成功地藉由預先合成的晶種進行製備異質結構量子點。其反應機制利用
    Ag2S 或是Cu2S 奈米晶體當作晶種,後續加入第二種金屬陽離子在晶種表面進行
    沉積或離子交換反應,藉以合成出多種異質結構量子點。
    在實驗表現上,因表面活性劑有穩定反應程序、減少表面缺陷特點,我們發
    現搭配表面活性劑所合成出之異質結構量子點,其螢光量子產率有不錯的提升。
    另一方面也利用Ag2S-CdS 異質結構的實驗原理成功合成出Cu2S-CdS 異質
    結構量子點,並討論其反應生成機制。
    接著再利用共同成長法順利合成過渡金屬摻雜CdS 量子點。CdS 量子點為
    本實驗之主體量子點,並以Ag(OAc)、Cu(OAc)作為摻雜物,藉以調控量子點的
    物理性質。於實驗表現中發現,在Cu 及Ag 摻雜時CdS 量子點擁有極易達成之
    光學可調性;當Cu 摻雜時,CdS 量子可由黃綠光調控至橘紅光,而在Ag 摻雜
    時,CdS 量子點可由黃綠光調控至橘黃光。
    在分析鑑定上,我們利用TEM、XRD、EDS、XPS、UV、PL 及ICP 對上
    述各種實加以分析與鑑定,並就其光學性質上的變化加以探討。


    In this work, we have successfully synthesized the heterostructure quantum dots
    (HNS QDs) by the preformed seeded approaches. Cu2S or Ag2S nanocrystals was
    utilized as the seed crystals in the synthesis process of HNS QDs, and the secondary
    cation ion precursor was introduced into the preformed seed solution, followed by the
    cation exchange reaction.
    A number of capping agents have demonstrated good surface modification for
    the preparation of QDs. For example, capping agents could reduce the surface trap
    sites of QDs, avoid QDs’ aggregation and so on. For these insights, we adapted the
    various capping agents in the reaction system. The results revealed that a good optical
    performance of HNS QDs such as high quantum yields. Additionally, we also utilized
    the same formation mechanism to generate Cu2S-CdS HNS QDs and studied the
    related reaction mechanism.
    Furthermore, we synthesized the cation doped QDs by the common growth
    method. In this stage, CdS QDs was employed as the host QDs which could be doped
    with Cu (or Ag) cation. The results demonstrated that CdS host QDs did not initially
    show good optical tunable, however, Cu (or Ag) doped CdS QDs exhibit red-shift
    emission, showing from green (or yellow) to red orange (or orange) color. The
    structure and composition of the as-prepared QDs were characterized by the use of
    TEM, XRD, EDS, XPS, UV, PL, and ICP.

    摘要................................................................................................................................1 Abstract .......................................................................................................................... 3 總目錄............................................................................................................................4 圖目錄............................................................................................................................7 表目錄..........................................................................................................................13 第一章緒論..............................................................................................................14 1.1 前言............................................................................................................... 14 1.2 研究動機....................................................................................................... 15 第二章 理論基礎與文獻回顧..................................................................................16 2.1 奈米材料之基本特性................................................................................... 16 2.1.1 小尺寸效應 (Size Effect) .................................................................. 16 2.1.2 量子尺寸效應 (The Quantum Size Effect) ....................................... 19 2.1.3 表面效應 (Surface Effect) ................................................................. 20 2.1.4 宏觀量子隧道效應(Macroscopic Quantum Tunneling, MQT) ....... 22 2.1.5 奈米材料之能隙與量子侷限效應..................................................... 22 2.1.6 奈米半導體材料光致發光(Photoluminescence)與電子躍遷機制 ... 27 2.2 奈米晶體發展與製備................................................................................... 29 2.2.1 量子點之發展.................................................................................... 29 2.3 摻雜奈米晶體簡介........................................................................................ 34 2.3.1 摻雜量子點的晶體成長方法與機制................................................ 35 2.4 銅原子摻雜於量子點介紹........................................................................... 40 2.4.1 銅摻雜量子點簡介............................................................................ 40 2.4.2 銅摻雜量子點概況............................................................................ 41 2.5 鋅原子摻雜於量子點介紹........................................................................... 45 2.5.1 鋅摻雜量子點簡介............................................................................ 45 2.5.2 鋅摻雜合金結構量子點概況............................................................ 45 2.6 銀原子摻雜於量子點介紹........................................................................... 49 2.6.1 銀摻雜量子點簡介............................................................................ 49 2.6.2 銀摻雜量子點概況............................................................................ 50 2.7 異質結構奈米晶體....................................................................................... 55 2.7.1 異質結構奈米晶體介紹.................................................................... 55 2.7.2 異質結構奈米晶體生長機制............................................................ 55 2.7.3 異質結構奈米晶體合成方法............................................................ 66 第三章 實驗儀器與方法..........................................................................................70 3.1 實驗架構....................................................................................................... 70 3.2 實驗藥品與儀器........................................................................................... 72 6 3.2.1 實驗藥品............................................................................................ 72 3.2.2 實驗儀器............................................................................................ 73 3.3 實驗步驟....................................................................................................... 74 3.3.1 CdS 量子點合成 ................................................................................. 74 3.3.2 Cu 摻雜於CdS 量子點合成 .............................................................. 75 3.3.3 Ag 摻雜於CdS 量子點合成 .............................................................. 75 3.3.4 Ag2S 量子點合成 ............................................................................... 76 3.3.5 Ag2S-CdS 量子點合成 ....................................................................... 76 3.3.6 Cu2S 量子點合成 ............................................................................... 77 3.3.7 Cu2S-CdS 量子點合成 ....................................................................... 77 3.4 樣品分析....................................................................................................... 78 第四章 實驗結果與討論..........................................................................................91 4.1.1 Ag2S-CdS 異質結量子點合成與光學特性的調控 ........................... 91 4.1.2 Cu2S-CdS 異質結量子點的合成 ..................................................... 109 4.2.1 CdS 量子點合成合成介紹 ............................................................... 113 4.2.2 Cu 摻雜CdS 量子點合成合成介紹 ................................................ 115 4.2.3 Ag 摻雜CdS 量子點合成合成介紹 ................................................ 122 第五章 結論與未來展望........................................................................................130 第六章參考文獻....................................................................................................131 6.1 摻雜量子點參考文獻................................................................................. 141 6.2 異質結構量子點參考文獻......................................................................... 144

    1. 馬振基編撰 (2003),奈米材料科技原理與應用,全華科技圖書股份有限公
    司,臺灣。
    2. 張立德等編(2002),奈米材料和奈米結構,鼎隆圖書股份有限公司,臺灣。
    3. 馬振基編撰 (2005)奈米材料科技原理與應用,全華科技圖書股份有限公司,
    台灣。
    4. 劉吉平、郝向陽 (2002)奈米科學與技術,世茂出版社。
    5. 張安華編撰(2005),實用奈米技術,新文京開發出版股份有限公司,台灣。
    6. A. P. Alivisatos, The Journal of Physical Chemistry, 1996, 100, 13226-13239.
    7. E. Roduner, Chemical Society reviews, 2006, 35, 583-592.
    8. 羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程、吳育民,奈米科技導論(ISBN
    978-957-21-6428-0),全華科技圖書股份有限公司,台灣。
    9. G. Sun, The Intersubband Approach to Si-based Lasers, Advances in Lasers and
    Electro Optics, Nelson Costa and Adolfo Cartaxo (Ed.), 2010.
    10. William E. Buhro, Vicki L. Colvin, Nature Materials,Vol.2, March 2003.
    11. K. D, Mielenz, Optical Radiation Measurements, New York, Academic Press,
    1982.
    12. The Electromagnetic Spectrum, Varian medical systems 2002 annual report.
    13. X. Lan, S. Masala and E. H. Sargent, Nat Mater, 2014, 13, 233-240.
    14. H. J. Simmons and S. P. Kelly, Optical Materials, San Diego, Academic Press,
    2000.
    15. A. H. Kitai, Solid State Luminescence, New York, Chapman&Hall, 1993.
    16. R. Kudo, J. Phys. Soc., 1996, 17, 975.
    132
    17. S. Roy and V.M. Rotello, Acc. Chem. Res., 2003, 36b 549.
    18. R. Birringer, Mat. Sci. Eng. A, 1989, 117, 33.
    19. X. Peng, L. Manna, W. Yang, J. Wickham, E. C. Scher, A.Kadavanich and A.P.
    Alivisatos, Nature, 2000, 404, 59.
    20. Y.-w. Jun, J.-H. Lee, J.-s. Choi and J. Cheon, The Journal of Physical Chem. B, 2005, 109,
    14795-14806.
    21. R.Rossetti, S. Nakahara and L.E. Brus, J. Chem. Phys., 1983, 79, 1086.
    22. C. B. Murrary, D. J. Noms and M. G. Bawendi, J. Am. Chem. Soc., 1993, 115,
    8706.
    23. A. Mews, A. Eychmiiller, M. Giersing, D. Schoss and H. Weller, J. Phys. Chem.,
    1994, 98, 934.
    24. 鄭凱安, 馬仁宏, 林殿琪, 黃郁棻, 劉瑄儀, 量子點光電應用專利地圖及
    分析,行政院國家科學委員會科學技術資料中心,台灣, 2003。
    25. 徐國財、張立德, 奈米複合材料,五南圖書出版股份有限公司,台灣, 2003。
    26. J. S. Son, K. Park, S. G. Kwon, J. Yang, M.K.Choi, J. Kim, J. H. Yu, J. Joo, and T.
    Hyeon, Small, 2012, 8, 2394.
    27. W. Zhang, and X. Zhong, Inorg. Chem., 2011, 50, 4065.
    28. M. Koneswaran, R. Narayanaswamy, Springer. Microchim Acta., 2012,
    178:171-178.
    29. J. Park, and Sang-Wook Kim, J. Mater. Chem., 2011, 21, 3745.
    30. D. Chen, F. Zhao, H. Qi, M. Rutherford, and X. Peng, Chem. Mater., 2010, 22,
    143.
    31. L. Huang, X. Wang, J. Yang, G. Liu, J. Han, and C. Li. J. Phys. Chem. C, 2013,
    117, 11584.
    32. R. Gill, M. Zayats and I. Willner, Angew. Chem. Int. Ed., 2008, 47, 7602-7625.
    33. A. M. Smith, H. Duan, A. M. Mohs and S. Nie, Adv. Drug Delivery Rev., 2008,
    133
    60, 1226-1240.
    34. I. L. Medintz, H. T. Uyeda, E. R. Goldman and H. Mattoussi, Nat Mater, 2005, 4,
    435-446.
    35. W. Zheng, K. Singh, Z. Wang, J. T. Wright, J. van Tol, N. S. Dalal, R. W.
    Meulenberg and G. F. Strouse, J. Am. Chem. Soc., 2012, 134, 5577-5585.
    36. L. Deng, Y. Shan, J.-J. Xu and H.-Y. Chen, Nanoscale, 2012, 4, 831-836.
    37. Y. Chen, L. Huang, S. Li and D. Pan, J. Mater. Chem. C, 2013, 1, 751-756.
    38. S. Jana, B. B. Srivastava, S. Acharya, P. K. Santra, N. R. Jana, D. D. Sarma and
    N. Pradhan, Chem. Commun., 2010, 46, 2853-2855.
    39. D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker and D. R. Gamelin, J.
    Am. Chem. Soc., 2003, 125, 13205-13218.
    40. P. V. Radovanovic and D. R. Gamelin, J. Am. Chem. Soc., 2001, 123,
    12207-12214.
    41. S. Acharya, D. D. Sarma, N. R. Jana and N. Pradhan, J Phys Chem Lett, 2009, 1,
    485-488.
    42. P. Yang, M. Lu, G. Zhou, D. Yuan and D. Xu, Inorg. Chem. Commun., 2001, 4,
    734-737.
    43. S. Jana, B. B. Srivastava and N. Pradhan, J Phys Chem Lett, 2011, 2, 1747-1752.
    44. P. Wu and X.-P. Yan, Chem. Soc. Rev., 2013, 42, 5489-5521.
    45. R. Buonsanti and D. J. Milliron, Chem. Mater., 2013, 25, 1305-1317.
    46. N. Pradhan and D. D. Sarma, J Phys Chem Lett, 2011, 2, 2818-2826.
    47. G. M. Dalpian and J. R. Chelikowsky, Phys. Rev. Lett., 2006, 96, 226802.
    48. A. Nag, S. Chakraborty and D. D. Sarma, J. Am. Chem. Soc., 2008, 130,
    10605-10611.
    49. F. Yang, N.-N. Yan, S. Huang, Q. Sun, L.-Z. Zhang and Y. Yu, The Journal of
    Physical Chemistry C, 2012, 116, 9078-9084.
    134
    50. Q. Shen, Y. Liu, J. Xu, C. Meng and X. Liu, Chemical communications, 2010,
    46, 5701-5703.
    51. D. J. Norris, N. Yao, F. T. Charnock and T. A. Kennedy, Nano Lett., 2000, 1, 3.
    52. N. Pradhan, D. Goorskey, J. Thessing and X. Peng, J. Am. Chem. Soc., 2005, 127,
    17586.
    53. Y. Yang, O. Chen, A. Angerhofer and Y. C. Cao, J. Am. Chem. Soc., 2006, 128,
    12428.
    54. D. Chen, R. Viswanatha, G. L. Ong, R. Xie, M. Balasubramaninan and X. Peng,
    J. Am. Chem. Soc., 2009, 131, 9333.
    55. Fei Zhang, Xi-Wen He, Wen-You Li and Yu-Kui Zhang, J. Mater. Chem., 2012,
    22, 22250-22257.
    56. N. S. Karan, D. D. Sarma, R. M. Kadam and N. Pradhan, J Phys Chem Lett,
    2010, 1, 2863.
    57. S. Gul, J. K. Cooper, C. Corrado, B. Vollbrecht, F. Bridges, J. Guo and J. Z.
    Zhang, J. Phys. Chem. C, 2011, 115, 20864-20875.
    58. R. Xie and X. Peng, J. Am. Chem. Soc., 2009, 131, 10645-10651.
    59. B. B. Srivastava, S. Jana and N. Pradhan, J. Am. Chem. Soc., 2010, 133,
    1007-1015.
    60. C. Unni, Daizy Philip, S.L. Smitha, K.M. Nissamudeen, K.G. Gopchandran,
    Spectrochimica Acta Part A, 2009, 72, 827-832.
    61. Xiaosheng Tang, Wenxi Bernice Ailsa Ho, and Jun Min Xue, J. Phys. Chem. C,
    2012, 116, 9769-9773.
    62. Wonkeun Chung, Hyunchul Jung, Chang Hun Lee, and Sung Hyun Kim, J.
    Mater. Chem. C, 2014, 2, 4227-4232.
    63. J. Wallentin, M. T. Borgstrom, L. Samuelson, M. Ekawa and K. Kawaguchi,
    Applied Physics Letters, 2013, 102, -.
    135
    64. Y. C. Zhang, W. W. Chen and X. Y. Hu, Crystal Growth & Design, 2007, 7,
    580-586.
    65. X. Xie, G. Z. Wang, Z. B. Shao and D. P. Li, The Journal of Physical Chemistry
    C, 2009, 113, 14633-14637.
    66. D. Mocatta, G. Cohen, J. Schattner, O. Millo, E. Rabani and U. Banin, Science,
    2011, 332, 77-81.
    67. S. Sahai, M. Husain, V. Shanker, N. Singh and D. Haranath, Journal of colloid
    and interface science, 2011, 357, 379-383.
    68. R. Sethi, L. Kumar, P. K. Sharma and A. Pandey, Nanoscale research letters,
    2009, 5, 96-102.
    69. Y. Chen, L. Huang, S. Li and D. Pan, Journal of Materials Chemistry C, 2013, 1,
    751.
    70. S. Jana, G. Manna, B. B. Srivastava and N. Pradhan, Small, 2013, 9, 3753-3758.
    71. X. G. Peng, M. C. Schlamp, A. V. Kadavanich, A. P. Alivisatos, J. Am. Chem.
    Soc., 1997, 119, 7019.
    72. Yu, S. S. Chang, C.L. Lee and C. R. C. Wang, J. Phys. Chem. B, 1997, 101, 6661.
    73. N. Cordente, M. Respaud, F. Senocq, M.-J. Casanove, C. Amiens and B. Chaudret,
    Nano Lett., 2001, 1, 565.
    74. V. F. Puntes, D. Zanchet, C. K. Erdonmez and A. P. Alivisatos, J. Am. Chem. Soc.,
    2002, 124, 12874.
    75. S. Chen, Z. Fan and D. L. Carroll, J. Phys. Chem. B, 2002, 106, 10777.
    76. H. Yu, J. Li, R. A. Loomis, P. C. Gibbons, Wang and W. E. Buhro, J. Am. Chem.
    Soc., 2003, 125, 16168.
    77. J. W. Grebinski, K. L. Hull, J. Zhang, T. H. Kosel and M. Kuno, Chem. Mater.,
    2004, 16, 5260.
    78. X. Zhong, R. Xie, L. Sun, I. Lieberwirth and W. Knoll, J. Phys. Chem. B, 2005,
    136
    110, 2.
    79. D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L. W. Wang and A. P.
    Alivisatos, Nature, 2004, 430, 190.
    80. S. M. Lee, Y. w. Jun, S. N. Cho and J. Cheon, J. Am. Chem. Soc., 2002, 124,
    11244.
    81. N. Zhao and L. M. Qi, Adv. Mater., 2006, 18, 359.
    82. L. Zheng, Y. Xu, Y. Song, C. Wu, M. Zhang and Y. Xie, Inorg. Chem., 2009, 48,
    4003.
    83. Y. Shi, Y. Wang, D. Wang, B. Liu, Y. Li and L. Wei, Cryst. Growth Des., 2012, 12,
    1785.
    84. M. E. Norako and R. L. Brutchey, Chem. Mater., 2010, 22, 1613.
    85. B. Koo, R. N. Patel, and B. A. Korgel, Chem. Mater., 2009, 21, 1962.
    86. R. A. Laudise, Chemical & Engineering News Archive, 1987, 65, 30.
    87. J. C. Lin and M. Z. Yates, Langmuir, 2005, 21, 2117.
    88. J. D. Mackenzie and E. P. Bescher, Accounts Chem. Res., 2007, 40, 810.
    89. P. Zhu, J. Zhang, Z. Wu and Z. Zhang, Cryst. Growth Des., 2008, 8, 3148.
    90. P. D. Cozzoli, T. Pellegrino and L. Manna, Chem. Soc. Rev., 2006, 35, 1195.
    91. J. Chun and J. Lee, Eur. J. Inorg. Chem., 2010, 10, 4251.
    92. Z. Y. Tang, N. A. Kotov and M. Giersig, Science, 2002, 297, 237.
    93. K. S. Cho, D. V. Talapin, W. Gaschler and C. B. Murray, J. Am. Chem. Soc.,
    2005, 127, 7140.
    94. Y. W. Jun, J. H. Lee, J. S. Choi, J. Cheon, J. Phys. Chem. B, 2005, 109, 14795.
    95. J. Wang and C. Zeng, Cryst. Growth, 2004, 270, 729.
    96. J. Wang, Q. W. Chen, C. Zeng and B. Y. Hou, Adv. Mater., 2004, 162, 137.
    97. S. E. Skrabalak and Y. Xia, Nano, 2009, 3, 10-15.
    98. M. Faraday, Philosophical Transactions of the Royal Society of London, 1857,
    137
    147, 145.
    99. H. Yu, P. C. Gibbons, K. F. Kelton and W. E. Buhro, J. Am. Chem. Soc., 2001,
    123, 9198.
    100. D. Seo, C. I. Yoo, J.Jung, H. Song, J. Am. Chem.Soc., 2008, 130, 29401.
    101. Y. Xia, Y. Xiong, B. Lim and S. E. Skrabalak, Angew. Chem. Int. Ed., 2009, 48,
    60.
    102. D. Wang and Y. Li, Adv. Mater., 2011, 23, 1044.
    103. A. Mews, A. Eychmuller, M. Giersig, D. Schooss and H. Weller, J. Phys. Chem.,
    1994, 98, 934.
    104. J. V. Williams, N. A. Kotov and P. E. Savage, Ind. Eng. Chem. Res., 2009, 48,
    4316.
    105. R. Xie, D. Battaglia and X. Peng, J. Am. Chem. Soc., 2007, 129, 15432.
    106. D. Pan, L. An, Z. Sun, W. Hou, Y. Yang, Z. Yang and Y. Lu, J. Am. Chem. Soc.,
    2008, 130, 5620.
    107. X. Lu, Z. Zhuang, Q. Peng and Y. Li, Chem. Commun., 2011, 47, 3141.
    108. W. Du, X. Qian, J. Yin and Q. Gong, Chem. Eur. J., 2007, 13, 8840.
    109. Y. Jiang, Y. Wu, X. Mo, W. Yu, Y. Xie and Y. Qian, Inorg. Chem., 2000, 39,
    2964.
    110. J. Xiao, Y. Xie, Y. Xiong, R. Tang and Y. Qian, J. Mater. Chem., 2001, 11, 1417.
    111. L. Ren, F. Yang, Y. R. Deng, N. N. Yan, S. Huang, D. Lei, Q. Sun and Y. Yu, Int.
    J. Hydrogen. Energ., 2010, 35, 3297.
    112. S. Liu, H. Zhang, Y. Qiao and X. Su, Advances, 2012, 2, 819.
    113. E. J. H. Lee, C. Ribeiro, E. Longo and E. R. Leite, J. Phys. Chem. B, 2005, 109,
    20842.
    114. Y. W. Jun, J. H. Lee, J. S. Choi, J. Cheon, J. Phys. Chem. B, 2005, 109, 14795.
    115. 簡有廷(2010),I-III-VI 族量子點製備與鑑定,台灣科技大學碩士論文, 台灣.
    138
    116. 許哲豪(2006),單一硒化鎘/硫化鋅膠體量子點之螢光特性,國立交通大學碩士
    倫文, 台灣.
    117. P.-J. Wu, J.-W. Yu, H.-J. Chao and J.-Y. Chang, Chemistry of Materials, 2014, 26,
    3485-3494.
    118. L. R. Becerra, C. B. Murray, R. G. Griffin and M. G. Bawendi, The Journal of
    Chemical Physics, 1994, 100, 3297-3300..
    119. B.-K. Pong, B. L. Trout and J.-Y. Lee, Langmuir, 2008, 24, 5270-5276.
    120. F. Wang, H. Yu, J. Li, Q. Hang, D. Zemlyanov, P. C. Gibbons, Wang, D. B. Janes
    and W. E. Buhro, Journal of the American Chemical Society, 2007, 129,
    14327-14335.
    121. L. Qu and X. Peng, Journal of the American Chemical Society, 2002, 124,
    2049-2055.
    122. M. Green, Journal of Materials Chemistry, 2010, 20, 5797-5809.
    123. W. Bu, Z. Chen, F. Chen and J. Shi, The Journal of Physical Chemistry C, 2009,
    113, 12176-12185.
    124. A. Puzder, A. J. Williamson, N. Zaitseva, G. Galli, L. Manna and A. P. Alivisatos,
    Nano Letters, 2004, 4, 2361-2365.
    125. A. B. Panda, S. Acharya and S. Efrima, Advanced Materials, 2005, 17,
    2471-2474.
    126. A. B. Panda, G. Glaspell and M. S. El-Shall, Journal of the American Chemical
    Society, 2006, 128, 2790-2791.
    127. S. Acharya, I. Patla, J. Kost, S. Efrima and Y. Golan, Journal of the American
    Chemical Society, 2006, 128, 9294-9295.
    128. I. Patla, S. Acharya, L. Zeiri, J. Israelachvili, S. Efrima and Y. Golan, Nano
    Letters, 2007, 7, 1459-1462.
    129. Y. Min, M. Akbulut, N. Belman, Y. Golan, J. Zasadzinski and J. Israelachvili,
    139
    Nano Letters, 2007, 8, 246-252.
    130. F. Wang, A. Dong, J. Sun, R. Tang, H. Yu and W. E. Buhro, Inorganic Chemistry,
    2006, 45, 7511-7521.
    131. N. Pradhan, H. Xu and X. Peng, Nano Letters, 2006, 6, 720-724.
    132. B. D. Yuhas, D. O. Zitoun, P. J. Pauzauskie, R. He and P. Yang, Angewandte
    Chemie International Edition, 2006, 45, 420-423.
    133. Z. Huo, C.-k. Tsung, W. Huang, X. Zhang and P. Yang, Nano Letters, 2008, 8,
    2041-2044.
    134. D. D. Fanfair and B. A. Korgel, Crystal Growth & Design, 2008, 8, 3246-3252.
    135. A. M. Chockla and B. A. Korgel, Journal of Materials Chemistry, 2009, 19,
    996-1001.
    136. K.-T. Yong, Y. Sahoo, H. Zeng, M. T. Swihart, J. R. Minter and P. N. Prasad,
    Chemistry of Materials, 2007, 19, 4108-4110.
    137. S. H. Lee, Y. J. Kim and J. Park, Chemistry of Materials, 2007, 19, 4670-4675.
    138. M. Ge, J. F. Liu, H. Wu, C. Yao, Y. Zeng, Z. D. Fu, S. L. Zhang and J. Z. Jiang,
    The Journal of Physical Chemistry C, 2007, 111, 11157-11160.
    139. E. Ramirez, L. Erades, K. Philippot, P. Lecante and B. Chaudret, Advanced
    Functional Materials, 2007, 17, 2219-2228.
    140. C. Wang, Y. Hu, C. M. Lieber and S. Sun, Journal of the American Chemical
    Society, 2008, 130, 8902-8903.
    141. Z. Xu, C. Shen, Y. Hou, H. Gao and S. Sun, Chemistry of Materials, 2009, 21,
    1778-1780.
    142. X. Lu, M. S. Yavuz, H.-Y. Tuan, B. A. Korgel and Y. Xia, Journal of the
    American Chemical Society, 2008, 130, 8900-8901.
    143. N. Pazos-Perez, D. Baranov, S. Irsen, M. Hilgendorff, L. M. Liz-Marzan and M.
    Giersig, Langmuir, 2008, 24, 9855-9860.
    140
    144. L. Cademartiri, F. Scotognella, P. G. O’Brien, B. V. Lotsch, J. Thomson, S.
    Petrov, N. P. Kherani and G. A. Ozin, Nano Letters, 2009, 9, 1482-1486.
    145. D. Ciuculescu, F. Dumestre, M. Comesana-Hermo, B. Chaudret, M. Spasova, M.
    Farle and C. Amiens, Chemistry of Materials, 2009, 21, 3987-3995.
    146. L. Tian, H. Yao Tan and J. J. Vittal, Crystal Growth & Design, 2007, 8, 734-738.
    147. C. Bullen and P. Mulvaney, Langmuir, 2006, 22, 3007-3013.
    148. D. V. Talapin, A. L. Rogach, M. Haase and H. Weller, The Journal of Physical
    Chemistry B, 2001, 105, 12278-12285.
    149. X. Zhong, Y. Feng and Y. Zhang, The Journal of Physical Chemistry C, 2006,
    111, 526-531.
    150. K. L. Sowers, B. Swartz and T. D. Krauss, Chemistry of Materials, 2013, 25,
    1351-1362.
    151. B. Sadtler, D. O. Demchenko, H. Zheng, S. M. Hughes, M. G. Merkle, U.
    Dahmen, L.-W. Wang and A. P. Alivisatos, Journal of the American Chemical
    Society, 2009, 131, 5285-5293.
    152. P. K. Jain, L. Amirav, S. Aloni and A. P. Alivisatos, Journal of the American
    Chemical Society, 2010, 132, 9997-9999.
    153. M. D. Regulacio, C. Ye, S. H. Lim, M. Bosman, L. Polavarapu, W. L. Koh, J.
    Zhang, Q.-H. Xu and M.-Y. Han, Journal of the American Chemical Society,
    2011, 133, 2052-2055.
    154. B. B. Srivastava, S. Jana, N. S. Karan, S. Paria, N. R. Jana, D. D. Sarma and N.
    Pradhan, J Phys Chem Lett, 2010, 1, 1454-1458.
    155. P. Thakur, S. S. Joshi, S. Kapoor and T. Mukherjee, Langmuir, 2009, 25,
    6377-6384.

    無法下載圖示 全文公開日期 2019/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE