簡易檢索 / 詳目顯示

研究生: 張翔昇
HSIANG-SHENG CHANG
論文名稱: p型摻雜注入層應用於有機薄膜電晶體特性改善之研究
Investigation on Performance Improvement of Organic Thin-Film Transistor Using p-Type Doped Injection Layer
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 林保宏
Pao-hung Lin
李志堅
Chih-Chien Lee
王錫九
none
顏文正
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 100
中文關鍵詞: 有機薄膜電晶體五苯環載子注入層
外文關鍵詞: organic thin film transistor, pentacene, injection layer
相關次數: 點閱:229下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以五環素(Pentacene)為主動層的有機薄膜電晶體中,探討使用摻雜注入層於有機主動層與源極/汲極之間的接觸效應,並且研究其對元件特性改善之效果。我們選擇使用上接觸式結構來研究摻雜注入層對元件特性的改善。首先我們把F4TCNQ與Pentacene以不同比例摻雜,發現F4TCNQ與Pentacene摻雜比例為1:1時為最佳化摻雜濃度。接著調變不同厚度的摻雜注入層,使其厚度參數也最佳化。由於接觸電阻與通道的長度無關,我們可以藉由線性區電流電壓和通道長度的關係,利用傳輸線模型(Transmission line model)萃取出接觸電阻,並且證明了加入摻雜注入層的元件特性之所以提升,是由於接觸電阻經由加入摻雜型注入層後而有效地降低了。
    我們以不同金屬做為有機薄膜電晶體的源極/汲極,研究電極功函數的差異對元件電性的影響,得到了在加入摻雜注入層後的元件就算搭配了較低功函數的金屬,也可以得到不錯的特性。


    The thesis discusses the contact effect of the interface between organic semiconductor layers and metal source/drain (S/D) electrodes on performance improvement of pentacene-based organic thin-film transistors (OTFTs), which uses top-contact (TC) structure and the p-doped injection layer at the pentacene/metal electrodes interface. First, we employed F4TCNQ doped pentacene with different doping ratio as injection layer. The best performance can be observed in which the doping ratio of F4TCNQ to pentacene is 1:1. Furthermore, we changed the thickness of injection layer to optimize the thickness for better performance. We extracted contact resistance of OTFT devices by Transmission line model, and we found the performance of device was improved as the contact resistance was decreased due to the p-doped injection layer.
    In addition, we fabricated organic thin-film transistors using different metals as source and drain electrode to discuss the effect of work function of metal electrodes on performance of OTFTs. We found that good performance can still be observed in which the OTFTs use the lower work function metal and the injection layer at the same time, as compared with the OTFTs using Au electrodes without injection layer.

    論文摘要 I ABSTRACT II 誌謝 III 圖目錄 VII 表目錄 X 第一章 概論 1 1.1 研究背景 1 1.2 研究動機與方向 2 1.3 論文大綱 3 第二章 有機薄膜電晶體介紹 9 2.1 有機半導體介紹 9 2.1.1 有機半導體材料概論 9 2.1.2 Pentacene材料特性介紹 10 2.2 有機半導體傳輸機制 11 2.2.1 分子間的傳導 12 2.2.2 分子內的傳導 12 2.3 有機薄膜電晶體結構 13 2.4 有機薄膜電晶體操作模式 15 2.5 參數萃取方式 16 2.5.1 載子移動率(Mobility, μ) 16 2.5.2 臨界電壓(Threshold Voltage, Vth) 17 2.5.3 次臨界斜率(Subthreshold Swing) 17 2.5.4 開關電流比(On/Off CurrentRatio, ION/IOff) 18 2.5.5 接觸電阻 18 第三章 實驗方法與步驟 36 3.1 有機薄膜電晶體之製作流程 36 3.1.1 基板(Substrate) 36 3.1.2 閘極(Gate) 36 3.1.3 閘極絕緣層(Gate Insulator Layer) 36 3.1.4 主動層(Active Layer) 37 3.1.5 載子注入層(Carrier injection layer) 38 3.1.6 源極/汲極(Source/Drain) 39 第四章 結果與討論 44 4.1 不同摻雜濃度之注入層對有機薄膜電晶體特性的影響 44 4.1.1 簡介 44 4.1.2 實驗參數 44 4.1.3 元件製作 45 4.1.4 元件分析 45 4.2 不同厚度注入層對有機薄膜電晶體影響 47 4.2.1 簡介 47 4.2.2 實驗參數 48 4.2.3 元件製作 48 4.2.4 元件分析 48 4.3 使用注入層於不同源/汲極金屬對有機薄膜電晶體影響 51 4.3.1 簡介 51 4.3.2 實驗參數 52 4.3.3 元件製作 52 4.3.4 元件分析 52 第五章 結論與未來工作展望 92 5.1 結論 92 5.2 未來工作展望 92    

    [1] T. T. Kawase, T. Shimoda, C. Newsome, H. Sirringhaus, R. H. Friend, “Inkjet Printing of Polymer Thin Film Transistors”, Thin-Solid films, 438, 279 (2003)

    [2] Y.-L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, ” Additive, Nanoscale Patterning of Metal Films with a Stamp and a Surface Chemistry Mediated Transfer Process: Applications in plasticelectronics”, Appl. Phys. Lett. 81, 562 (2002)

    [3] R. Schroeder, L. A. Majewski, M. Grell, J. Maunoury, J. Gautrot, P. Hodge, and M Turner, “Electrode Specific Electropolymerization of Ethylenedioxythiophene: Injection Enhancement in Organic Transistors”, Appl. Phys. Lett. 87, 113501 (2005)

    [4] K. Nomoto, N. Hirai, N. Yoneya, N. Kawashima, M. Noda, M. Wada, and J. Kasahara, “A High-Performance Short-Channel Bottom-Contact OTFT and Its Application to AM-TN-LCD”, IEEE T. Electron Dev. 52, 1519 (2005)

    [5] L. Zhou, S. Park, B. Bai, J. Sun, S. C. Wu, T. N. Jackson, S. Nelson, D. Freeman, and Y. Hong, “Pentacene TFT Driven AM OLED Displays”, IEEE Electron Device Letter. 26, 640 (2005)

    [6] V. Subramanian, J. M. J. Frechent, P. C. Chang, and S. K. Volkman, ” Progress Toward Development of All-Printed RFID Tags: Materials, Processes, and Devices”, 44Proceeding Of The IEEE, 93, 1330 (2005)

    [7] Zheng-Tao Zhu, Jeffery T. Mason, Rudiger Dieckmann, and George G. Malliaras, “Humidity Sensors Based on Pentacene Thin-Film Transistors”, Appl. Phys. Lett. 1,
    4643 (2002)

    [8] Moo Whan Shin, Sun Ho Jang, “Thermal analysis of active layer in organic thin-film transistors” Organic Electronics 13 767–770 (2012)

    [9] Chang Bum Park, Jong Duk Lee, “Effect of stacked dielectric with high dielectric constant and surface modification on current enhancement in pentacene thin-film transistors” Current Applied Physics 13 170-175 (2013)

    [10] Hyoungsub Kim, Sunyoung Sohn, Donggeun Jung, Wan Joo Maeng, Hyungjun Kim, Tae Sang Kim, Jungseok Hahn, Sangyun Lee , Yeonjin Yi, Mann-Ho Cho, “Improvement of the contact resistance between ITO and pentacene using various metal-oxide interlayers” Organic Electronics 9 1140–1145 (2008)

    [11] N. J. Watkins, L. Yan, and Y. Gao, “Electronic structure symmetry of interfaces between pentacene and etals”, Appl. Phys. Lett., 80, 4384 (2002).

    [12] H. Peisert, M. Knupfer, and J. Fink, “Energy level alignment at organicOmetal interfaces: Dipole and ionization potential”, Appl. Phys. Lett., 81, 2400 (2002).

    [13] J. M. Zhao, S. T. Zhang, X. J. Wang, Y. Q. Zhan, X. Z. Wang, G. Y. Zhong, Z. J. Wang, X. M. Ding, W. Huang, and X. Y. Hou, “Dual role of LiF as a hole-injection buffer in organic light-emitting diodes”, Appl. Phys. Lett., 84, 2913 (2004).

    [14] S. T. Zhang, X. M. Ding, J. M. Zhao, H. Z. Shi, J. He, Z. H. Xiong, H. J. Ding, E. G. Obbard, Y. Q. Zhan, W. Huang, and X. Y. Hou,“Buffer-layer-induced barrier reduction: Role of tunneling in organic light-emitting devices”, Appl. Phys. Lett., 84, 425 (2004).

    [15] X. J. Wang, J. M. Zhao, Y. C. Zhou, X. Z. Wang, S. T. Zhang, Y. Q. Zhan, Z. Xu, H. J. Ding, G. Y. Zhong, H. Z. Shi, Z. H. Xiong, Y. Liu, Z. J. Wang, E. G. Obbard, X. M. Ding, W. Huang, and X. Y. Hou, “Enhancement of electron injection in organic light-emitting devices using an Ag/LiF cathode”, J. Appl. Phys., 95, 3828 (2004).

    [16]A.Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film,” Applied Physics Letters, Vol. 49, pp. 1210 (1986).

    [17]A. Assadi, C. Svensson, M. Willander, and O. Ingans, “Field‐effect mobility of poly(3‐hexylthiophene),” Applied Physics Letters, Vol. 53, pp. 195 (1988).

    [18]J. Paloheimo, E. Punkka, H. Stubb, and P. Kuivalainen, in Lower Dimensional Systems and Molecular Devices, Proceedings of NATO ASI, Spetses, Greece (Ed: R. M. Mertzger), Plenum, New York, (1989).

    [19]Z. Bao, A. Dodabalapur, and A. J. Lovinger, “Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility,” Applied Physics Letters, Vol. 69, pp. 4108 (1996).

    [20]H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated Optoelectronic Devices Based on Conjugated Polymers,” Science, Vol. 280, pp. 1741-1744 (1998).

    [21]F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface,” Journal of Applied Physics, Vol. 54, pp. 3255 (1983).

    [22]J. H. Burroughes, C. A. Jones, and R. H. Friend, “New semiconductor device physics in polymer diodes and transistors ,” Nature, Vol. 335, pp. 137-141 (1988).

    [23]H. Fuchigami, A. Tsumura, and H. Koezuka, “Polythienylenevinylene thin‐film transistor with high carrier mobility,” Applied Physics Letters, Vol. 63, pp. 1372 (1993).

    [24]J. H. Schon, Ch. Kloc, and B. Batlogg, “On the intrinsic limits of pentacene field-effect transistors,” Organic Electronics, Vol. 1, pp. 57-64, (2000).

    [25]Y.-Y. Lin, D. J. Gundlach, S. Nelson, and T. N. Jackson, “Stacked pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron Device Letters, Vol. 18, pp. 606 (1997).

    [26]C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, “Molecular beam deposited thin films of pentacene for organic field effect transistor applications,” Journal of Applied Physics, Vol. 80, pp. 2501 (1996).

    [27]Y. Y. Lin, D. J. Gundlach, and T. N. Jackson, “High Mobility Pentacene Organic Thin Film Transistors,” 54th Annual Device Research Conference Digest, New York, pp. 80 (1996).

    [28]G. Horowitz, X. Peng, D. Fichou, and F. Garnier, “Role of the emiconductor/insulator interface in the characteristics of π-conjugated-oligomer-based thin-film transistors ,” Synthetic Metals, Vol. 51, pp. 419-424 (1992).

    [29]R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, and R. M. Fleming, “C60 thin film transistors,” Applied Physics Letters, Vol. 67, pp. 121, (1995).

    [30]J. Kastner, J. Paloheimo, and H. Kuzmany, in Solid State Sciences, edited by H. Kuzmany, M. Mehring, and J. Fink, Springer, New York, pp. 512-515, (1993).

    [31]A. R. Brown, D. M. de Leeuw, E. J. Lous, and E. E. Havinga, “Organic n-type field-effect transistor,” Synthetic Metals, Vol. 66, pp. 257 (1994).

    [32]J. G. Laquindanum, H. E. Katz, A. Dodabalapur, and A. J. Lovinger, “n-Channel Organic Transistor Materials Based on Naphthalene Frameworks,” Journal of the American Chemical Society, Vol. 118, pp. 11331-11332 (1996).

    [33]G. Guillaud, M. Al Sadound, and M. Maitrot, “Field-effect transistors based on intrinsic molecular semiconductors,” Chemical Physics Letters, Vol. 167, pp. 503 (1990).

    [34]Z. Bao, A. J. Lovinger, and J. Brown, “New Air-Stable n-Channel Organic Thin Film Transistors,” Journal of the American Chemical Society, Vol. 120, pp. 207 (1998).

    [35]H. Fuchigami, A. Tsumura, and H. Koezuka, “Polythienylenevinylene thin‐film transistor with high carrier mobility,” Applied Physics Letters, Vol. 63, pp. 1372 (1993).

    [36]M. Baldo, M. Deutsch, P. Burrows, H. Gossenberger, M. Gerstenberg, V. Ban, and S.Forrest, “Organic Vapor Phase Deposition,” Advanced Material, Vol.10, pp.234-238 (1998).

    [37]E. M. Conwell, “Impurity Band Conduction in Germanium and Silicon,” Physical Review Letters, Vol. 103, pp. 51-61 (1956).

    [38]N. F. Mott, “On the transition to metallic conduction in semiconductors,” Canadian Journal of Physics. Vol. 34, pp. 1356 (1956).

    [39]S. Locci, “Modeling of Physical and Electrical Characteristics of Organic Thin Film Transistors,” Ph.D dissertation, University of Cagliari, (2009).

    [40]倪偵翔,「可溶性有機薄膜電晶體材料之開發」,碩士論文,國立中央大學,桃園 (2006).

    [41]D. Kumaki, T. Umeda, and S. Tokito, “Influence of H2O and O2 on threshold voltage shift in organic thin-film transistors: Deposition of SiOH on SiO2 gate-insulator surface,” Applied Physics Letters, Vol. 92, pp. 093309 (2008).

    [42]Y. H. Noh, Y. Park, S. M. Seo, and H. H. Lee, “Root cause of hysteresis in organic thin film transistor with polymer dielectric,” Organic Electronics, Vol. 7, pp. 271-275 (2006).

    [43]Y. Roichman, and N. Tessler, “Structures of polymer field-effect transistor: Experimental and numerical analyses,” Applied Physics Letters, Vol. 80, pp. 151 (2002).

    [44]I. Kymissis, C. D. Dimitrakopoulos, and S. Purushothaman, “High-Performance Bottom Electrode Organic Thin-Film Transistors,” IEEE Transactions on electron devices, Vol. 48, pp.1060-1064 (2001).

    [45]G. B. Blanchet, C. R. Fincher, and M. Lefenfeld, “Contact resistance in organic thin film transistors,” Applied Physics Letters, Vol. 84, (2004).

    [46]S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, CH. 7, (1981)
    A. R. Brown, C. P. Jarrett, D. M. de Leeuw and M. Matters, “Field-eddect transistor made from solution-procceed organic semiconductors,” Synthetic Metals, Vol. 88, pp. 37-55 (1997).
    [47] N. J. Watkins, L. Yan, and Y. Gao, “Electronic structure symmetry of interfaces between pentacene and metals,” Applied Physics Letters, Vol. 80, No. 23, pp. 4384–4386 (2002).
    [48] Jun Li, Xiao-Wen Zhang, Liang Zhang, Khizar-ul-Haq, Xue-Yin Jiang, Wen-Qing Zhu, Zhi-Lin Zhang. “Improving organic transistor performance through contact-area-limited doping”, Solid State Communications 149 1826–1830 (2009)

    [49] Y. Abe, T. Hasegawa, Y. Takahashi, T. Yamada, and Y. Tokura. “Control of threshold voltage in pentacene thin-film transistors using carrier doping at the charge-transfer interface with organic acceptors” APPLIED PHYSICS LETTERS 87, 153506 (2005)
    [50] H. Wang, L. Wang, Y. Gao, D. Zhang, and Y. Qiu, “Efficient organic light-emitting diodes with teflon as buffer layer,” Japanese Journal of Applied Physics, Vol. 43, No. 10B, pp. L1353–L1355 (2004).
    [51]Z. Wu, L. Wang, H. Wang, Y. Gao, and Y. Qiu, “Charge tunneling injection through a thin teflon film between the electrodes and organic semiconductor layer: Relation to morphology of the teflon film,” Physical Review B, Vol. 74, No. 16, pp. 165307–165307-7 (2006).
    [52] Gerold M. Rangger, Oliver T. Hofmann, Lorenz Romaner, Georg Heimel, Benjamin Broker, Ralf-Peter Blum, Robert L. Johnson, Norbert Koch, and Egbert Zojer “F4TCNQ on Cu, Ag, and Au as prototypical example for a strong organic acceptoron coinage metals” PHYSICAL REVIEW B 79, 165306 (2009)
    [53]D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V. Necliudov, and M. S. Shur, “An experimental study of contact effects in organic thin film transistors,” Journal of Applied Physics, Vol. 100, No. 2, pp. 024509–024509-13 (2006).
    [54]X. Yan, J. Wang, H. Wang, H. Wang, and D. Yan, “Improved n-type organic transistors by introducing organic heterojuction buffer under source/drain electrodes,” Applied Physics Letters, Vol. 89, No. 5, pp. 053510–053510-3 (2006).
    [55]W. Hu, Y. Zhao, C. Ma, J. Hou, and S. Liu, “Improving the performance of organic thin-film transistor with a doped interlayer,” Microelectronics Journal, Vol. 38, No. 4–5, pp. 509–512 (2007).

    無法下載圖示 全文公開日期 2018/07/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE