簡易檢索 / 詳目顯示

研究生: 林豈瑋
Chi-wei Lin
論文名稱: 利用電紡複合紗技術進行改善奈米碳纖維吸附材製程之研究
A Study of Modified Manufacturing Process of Carbon Nano Fiber Absorbent Prepared by Electro-Spun Composite Yarn Technology
指導教授: 蘇清淵
Ching-Iuan Su
口試委員: 陳建光
Jem-Kun Chen
陳建宏
Jean-Hong Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 79
中文關鍵詞: 靜電紡絲奈米纖維複合紗活性碳纖維布BET比表面積
外文關鍵詞: Electrospinning, Nanofiber, Composite yarn, Activated carbon fabrics, BET specific surface area.
相關次數: 點閱:353下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究採用靜電紡複合紗技術來製備奈米纖維複合紗織物,此技術結合奈米纖維及一般紗線的特性,利用傳統紗線做為芯紗,提供複合紗良好的強力性質,補足奈米纖維強度不足的問題,並保有原奈米纖維的功能。在實驗中,我們以奈米纖維複合紗織物作為前軀體,喂入連續式高溫爐,經熱處理加工製備成活性碳纖維,過程中改變活化源量,製備出數種不同條件的碳奈米纖維吸附材,並進行產品特性的測試及評估。
實驗結果顯示,經過氧化及碳化處理後,受到熱處理溫度的影響,纖維直徑與抗強度下降,氧化後的奈米纖維複合紗織物限氧指數高於40以上,成為不燃纖維,強力減少了71%。經碳化活化後,產率為17%,雖然強度減少約90%,但不影響加工程序的進行,最終順利製造出奈米碳纖維吸附材,其BET比表面積約1100m2/g,奈米纖維直徑約100-150nm 。


In this study we utilized an Electro-Spun Composite Yarn Technology to produce nanofiber composite yarn fabrics(NCF). This technique combined electron-spun nanofibers with traditional yarn, and it utilized traditional yarn to be the core yarn. And then it retained the good characteristics of nanofibers and provided excellent strength on composite yarn.
In the experiment, we used Nanofiber composite yarn knitted fabrics as the raw material of activated carbon fabrics at different flow rates of activator. To prepare several different conditions of carbon nano fiber absorbent, and evaluate their performance.
The experimental results showed that the diameter and tensile strength are decreased with the increase of the heat-treatment temperature. The limit oxygen index (LOI) value is higher than 40% (vol./vol.) after oxidation process, and the tensile strength was decreased 71%.
After carbonization and activation, the yield rate was 17%. Although it lost a lot of strength, the processes had not been affected. In addition, the specific surface area of BET of Carbon Nano Fiber Absorbent was around 1100m2/g, and the diameter of nano fiber was 100-150nm.

目錄 摘要 I Abstract II 誌謝 III 圖目錄 IX 表目錄 XI 第一章、緒論 1 1.1前言 1 1.2 奈米纖維材料 2 1.2.1 奈米纖維材料的定義 2 1.2.2 奈米纖維材料之製備 5 1.2.3傳統式纖維材料之熱處理加工方法與應用 10 1.2.4奈米纖維之熱處理加工與應用 12 1.3 研究動機與目的 14 第二章、文獻回顧與原理 15 2.1 靜電紡絲 15 2.1.1 靜電紡絲工程與原理 15 2.1.2 靜電紡絲參數 16 2.1.3靜電紡奈米纖維紗線 17 2.2 熱處理加工 21 2.2.1氧化工程 21 2.2.2碳化工程 24 2.2.3活化工程 26 2.3 孔洞結構形成 28 2.4 活性碳吸附理論 29 2.4.1吸附機構 29 2.4.2 等溫吸附曲線 31 2.4.3 BET等溫吸附理論 34 第三章、實驗 36 3.1 實驗材料 36 3.1.1實驗原物料 36 3.1.2 實驗藥劑與氣體 36 3.2 實驗設備與測試分析儀器 37 3.2.1 實驗設備 37 3.2.2實驗測試分析儀器 39 3.3 實驗流程圖 40 3.4實驗架構(特性要因)圖 41 3.5實驗方法 42 3.5.1 實驗溶液製備 42 3.5.2 奈米纖維複合紗製備工程 42 3.5.3 奈米纖維複合紗織造工程 43 3.5.4 氧化、碳化及活化工程 44 3.6 實驗分析測試 45 3.6.1 物性測試分析 45 3.6.2限氧指數分析 47 3.6.3 元素分析 48 3.6.4 微細構造分析 49 3.6.5比表面積分析 50 第四章、結果與討論 51 4.1 物性測試分析 51 4.1.1奈米纖維與奈米纖維複合紗之重量百分比 51 4.1.2 氧化及碳化活化產率 52 4.1.3 抗拉強度探討 54 4.3 元素分析 57 4.4 微細構造分析 59 4.4.1 奈米纖維複合紗SEM觀察分析 59 4.4.2 奈米纖維複合紗織物SEM觀察分析 61 4.4.3 氧化奈米纖維複合紗織物SEM觀察分析 62 4.4.4碳奈米纖維吸附材SEM觀察分析 63 第五章、結論 68 參考文獻 70

【1】 江宗穎,「聚丙烯腈系電紡不織布高溫氧化處理物性與微細構造之研究」,碩士論文,國立台灣科技大學,台北(2005)
【2】 M. C. Rocco, and R. S. William, P .Alivisiatos, editors, Nanotechnology Research Directions: IWGN Workshop Report, National Science and technology Council, September (1999)
【3】 A. S. Edelstein, and R. C. Cammarate, Chap.1 in Nanomaterails: Synthesis, Properties and Applications, IOP Publishing, (1996)
【4】 經濟部工業局,產業用纖維,紡織綜合研究所發行,p124-178,(2004)
【5】 黃楠儒,「氣相成長碳纖維/炭管之研究」,碩士論文,國立成功大學,台南(1998)
【6】 張淇芝,「基材備製對氣相成長碳纖維/管的影響」,碩士論文,國立成功大學,台南(2000)
【7】 P. v. Adhyap and Trupti Maddanimath etc., Application of electrochemically prepared carbon nanofiber in supercapacitors, Journal of Power Sources, 109: p105-110, (2002)
【8】 Zheng-Ming Huang, Y.-Z.Zhang, M. Kotaki, and S. Ramakrishna, A review on polymer nanofiber by electrospinning and their applications in nanocomposites, Comosites science and technology, April p2223-2253, (2003)
【9】 G. Taylor, Proc Roy Soc London A, p313, 453, (1969)
【10】 Frank K Ko, Nanofiber Technology: Bridging the Gap between Nano and Marco World, Fibrous Materials Research Laboratory, Department of Materials Science and Engineering, Drexel University, Philadelphia, Pa.19104, U.S.A., (2004)
【11】 大谷杉郎、大谷朝男 共著、賴耿陽譯著,碳纖維材料入門,復漢出版社發行,p35,(2000)
【12】 Mayer, R.O., Ecker, D. R. and Spry, W. J. U. S. Patent 3,333: p926, (1993)
【13】 許明發先生翻譯,日本碳纖維最近之發展,中華民國尖端材料科技協會,p4-5,(1993)
【14】 初谷誠一,特殊纖維(上),台隆書店經售,p176,(昭和44年)
【15】 D. J. Johnson, Phil, Trans. R. Soc. and Lond, A294, p443-449, (1980)
【16】 J. B. Donne, and R. C. Bansal(Second Edition), Carbon Fiber“Carbon Fiber Application”, p40,146-147, 443-449, (1993)
【17】 李崇堡編著,新材料素材及其應用,耐燃性素材(Ch.14),p271-273,(1996)
【18】 平井實,耐炎纖維,纖維與工業 Vol.49(No.5),(1993)
【19】 J. Matsui, H. S. Matsuda and Maeda, J. Industrial Fabrics,3: p43, (1985)
【20】 許永綏編譯,高性能纖維學(續),徐氏基金會出版,p1-56,(1997)
【21】 賴耿陽編著,碳材料化學與工學,復漢出版社發行,p82-139,(2001)
【22】 稻垣道夫、大谷杉郎、大谷朝男 共著、賴耿陽譯著,碳材料碳纖維工學,復漢出版社發行,p35,(2001)
【23】 大谷朝男、笠原直人,極細碳纖維的開發,機能材料Vol. 20,4: p20-26,(2000)
【24】 大谷朝男,熔融紡絲奈米碳管的新穎製法,機能材料Vol. 21, 11:p41-46,(2001)
【25】 陳聯泰、蕭弘毅,級細碳纖維的開發及應用,工研院化工所纖維技術研究組,(2002)
【26】 Yu Wang, Santiago Serrano, and Jorge J. Santiago-Aviles, Raman characterization of carbon nanofibers prepared using electrospinning, Synthetic Metals 138, p423-427, (2003)
【27】 H. Nemmara, and G.G. Chase, Synthesis and testing of activated carbon nanofibers, Microscale Physiochemical Engineering Center The University of Akron, (2002)
【28】 Kristine Graham, Ming Ouyang, and Tom Raether, Polymeric Nanofibers in Air Filtration Applications, Tim Grafe, Bruce McDonald, Paul Knauf Donaldson Co., (2001)
【29】 Yu Wang, and Jorge J. Santiago-Aviles, Carbon and graphitic nano-fibers from metallo-organic precursors., Early Stages on the Graphitization of Electrostatically Generated PAN Nanofibers, Deptment of Electrical and System Engineering, University of Pennsylvania, Philadelphia, (2004)
【30】 Department of Chemistry and Chemical Engineering, Electrospinning and Polymer Nanofibers, (2004)
【31】 C. Kim and K. S. Yanga, Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning, Faculty of Applied Chemical Engineering, Chonnam National University, (2003)
【32】 Doshi, Jayesh, Development of High Surface Area Material and Filter, EPA Contract Number: 68D02021, (2002)
【33】 You-Lo Hsieh, UC Davis, Nano-Porous Ultra-High Specific Surface Fibers, National Textile Center,FY 2004 New Project Proposal, Project : No. C04-CD06, (2004)
【34】 Yu Wang, Jorge J. Santiago-Aviles, Rogerio Furlan and Idalia Ramos, Pyrolysis temperature and time dependence of electrical conductivity evolution for electrostatically generated carbon nanofiber, Ieee transactions on nanotechnology Vol.2, 1: p39-43,(2003)
【35】 Yu Wang, Jorge J. Santiago-Aviles, Low temperature electronic properties of electrospun PAN-derived carbon nanofiber, Ieee transactions on nanotechnology, March Vol.3, 7: p354-356, (2003)
【36】 D.H. Reneker, I. Chun, Nanometer diameter fibers of polymer, produced byelectrospinning, Nanotech Vol. 7, 3: p216-223, (1996)
【37】 Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Sci. and Tech., Vol. 63, 15: p2223-2253, (2003)
【38】 S.N. Reznilk, A.L. Yarin, A. Theron, and E. Zussman, Transient and steady shapes of droplets attached to a surface in a strong electricfield, J. of Fluid Mech., 516, p349-377, (2004)
【39】 S.V. Fridrikh, J.H. Yu, M.P. Brenner, G.C. Rutledge, Controlling the fiber diameter during electrospinning. Physical Review Letters Vol. 90, 14: p144502/1-144502/4, (2003)
【40】 W.E. Teo, R. Gopal, R. Ramaseshan, K. Fujihara, S. Ramakrishna, A dynamic liquid support system for continuous electrospun yarn fabrication, Polymer, Vol. 48, 12: p3400-3405, (2007)
【41】 Liwei Huang, Nhu-Ngoc Bui, Seetha S. Manickam, and Jeffrey R. McCutcheon, Controlling electrospun nanofiber morphology and mechanical properties using humidity, journal of polymer science part B: polymer physics Vol. 49, p1734-1744, (2011)
【42】 Frank Ko, Yury Gogotsi, Ashraf Ali, Nevin Nagub, Haihui Ye, Goliang, Christopher Li, and Peter Wills., Electrospinning of continuous Carbon Nanotube-Filled Nanofiber Yarns, Adv, Mater, Vol. 15, 14, July 17, (2003)
【43】 Xuefen Wang, Kai Zhang, Meifang Zhu, Hao Yu, Zhe Zhou , Yanmo Chen, Benjamin S. Hsiao, Continuous polymer nanofiber yarns prepared by self-bundling electrospinning method, Polymer, Vol. 49, 11:p2755-2761, (2008)
【44】 Huan Pan, Luming Li, Long Hu, Xiaojie Cui, Continuous aligned polymer fibers produced by a modified electrospinning method, Polymer, Vol. 47,14: p4901-4904, (2006)
【45】 W E Teo, M Kotaki, X M Mo, S Ramakrishna, Porous tubular structures with controlled fibre orientation using a modified electrospinning method, Nanotechnology, Vol. 16, 6: p918-924, (2005)
【46】 賴庭昌,「靜電紡奈米纖維紗線成型研究」,碩士論文,國立台灣科技大學,台北(2009)
【47】 Bahl and L.M. Manocha, characterization of oxidized pan fibers,Carbon, Vol.12, p417-423, (1974)
【48】 Ko, T. H., P.C. hiranairadual, and C. H. Lin, The Influence of Continuous Stabilization on the properties of stabilized Fibers and the Final Activated Carbon Fibers, Part 1, polymer. Engineering Sci., Vol. 31,19: p1618-1626, (1991)
【49】 Ko, T. H., P. Chiranairadual, and C. H. Lin, The Study of Polyacrylonitrile-based Actived Carbon Fibers for Water Purification : Part 1, J.Mater.Sci.Lett.,Vol.11, p6-8, (1992)
【50】 Ko, T. H., P. Chiranairadual, and C. H. Lin, and C. K. Lu, The effect of Activation by carbon Dioxide on the Mechanical Properties and Structure of Pan-based Actived Carbon Fibers, Carbon, Vol. 30,4: p647-655, (1992)
【51】 Ko, T. H., H. Y. Ting, and C. H. LIN, Thermal Stabilization of Polyacrylonitrile Fibers, J. Apply. Polymer. Sci., 35, p631-640, (1989)
【52】 R. Houtz, Textile Research J., Vol. 20, p786, (1950)
【53】 N. Grassie and R. McGuchan, Pyrolysis of polyacrylonitrile and related polymers—III. Thermal analysis of preheated polymers, European Polymer Journal,Vol.7, p1357-1371, (1971)
【54】 W. watt and W. johnson, Mechanism of oxidization of polyacrylonitrile fibers, Nature, Vol. 257, p210-212, (1975)
【55】 K.Y. Marita, A. K. Murayama, T. Ono, and A. Nakayama, Pure Apply.Chem, NO. 58, p455-468, (1986)
【56】 Mayer, R. O., Ecker, D. R., and Spry, W. J. U. S. Patent 3,333,926, (1967)
【57】 P. J. Goodhew, A. J. Clarke, and Bailey, A Review of the Fabrication and Properties of Carbon Fibers. Materials Science and Engineering, Vol. 17, p3-30, (1975)
【58】 V. I. Kasatochkin, V. A. Kargin (Moscow. Mineral Fuels Inst., Moscow, USSR). Thermal transformation of oriented poly-. acrylonitrile. Dokl. Akad. Nauk SSSR 191, (1970)
【59】 J. Alcaniz-Monge, et al. Effect of the activating gas on tensile strength and pore structure of pitch-based carbon fibres, Carbon, Vol.32, 7: p1173, (1994)
【60】 Jean-Baptiste Donnet, Roop Chand Bansal, Carbon Fibers, Marcel Dekker, New and Basel, p40, (1990)
【61】 炭素材料學會編,活性炭-基礎與應用,講談社,P84-86,(1989).
【62】 K. Gergova, N. Petrov and S. Eser, Adsorption properties and microstructure of activated carbons produced from agricultural by-products by steam pyrolysis. Carbon, Vol. 32, 4: p693-702, (1994)
【63】 J. de D. Lopez-Gonzalez, et al,Preparation and characterization of active carbons from olive stones , Carbon, Vol. 18, p413-418, (1980)
【64】 R. Torregrosa, J. M. Martin-Martinez, Activation of lignocellulosic materials: a comparison between chemical, physical and combined activation in terms of porous texture, Fuel, Vol.70, p1173-1180, (1991)
【65】 吳文演博士著,高科技新功機能性纖維材料與應用,增光國際股份有限公司,p277- 279,(2004)
【66】 賀福、王茂章,碳纖維及其複合材,科學出版社,(1995)
【67】 A. IUPAC Mannal of symbol and terminology, pt1, Colloid and surface Chemistry, Pure Appl. Chem., p31, 578, (1921).
【68】 Juntgen H, New applications for carbonaceous adsorbents, Carbon, Vol.15, Issue 5,p273-283, (1977)
【69】 Greeg, S. J. and Sing K. S. W, Adsorpaion Surface Areas and Porosity, Academic Press, London and New York 2nd (1982)
【70】 Jeonard A. Jonas, Reaction steps in gas sorption by impregnated carbon, Carbon, Vol.16, p115-119,(1978)
【71】 D. Benefield Larry, J. Joseph, J. Judkins and I. Barren Weand, Process Chemistry for Waterand Watewater Treatment, 202,99(1982)
【72】 S. Lowell and J. E. Shields, Powder surface area and porosity, Chapman and Hall, (1984)
【73】 Irving Langmuir, Chemical Reactions at Low Pressure, p1139-1167, (1915)
【74】 Stephen Brunauer, P.H.Emmett and Edward Teller, Adsorption of Gases in Multimolecular Layers, Vol.60, p309-319, (1938)
【75】 宮本武明,本宮達也原著,新纖維材料入門,中國紡織工業研究中心出版,(1997)
【76】 American Society for Testing and Materials, ASTM D 885 Standard Test Methods for Tire Cords, Tire Cord Fabrics, and Industrial Filament Yarns Made from Manufactured Organic-Base Fibers.
【77】 Chinese National Standards, CNS 13752 織物試驗法.
【78】 American Society for Testing and Materials, ASTM D 2863 Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics.
【79】 S.C. Bennett and D.J. Johnson, Electron-microscope studies of structural heterogeneity in pan-based carbon fibres, Carbon, Vol.17, p25-39, (1979)
【80】 M. Balasubramanian,et al. Conversion of acrylonitrile-based precursors to carbon fibres Part 3 Thermooxidative stabilization and continuous, low temperature carbonization. Journal of Materials Science, Vol.22, p3864-3872, (1987)
【81】 翁智偉,聚丙烯腈系電紡不織布連續氧化製程之研究,碩士論文,國立台灣科技大學,台北(2012)
【82】 E. Fitzer, W. Frohs , and M. Heine, Carbon, Vol. 24,p387, (1980)

QR CODE