簡易檢索 / 詳目顯示

研究生: 張祐豪
Yu-Hao Chang
論文名稱: 單軸/同軸靜電紡絲製備具導電性PVP/Ag複合奈米纖維膜及物性分析之研究
Preparation and Physical Analysis of Conductive PVP/Ag Nanofiber Film by Single/Co-axial Electrospinning
指導教授: 李俊毅
Jiunn-Yih Lee
口試委員: 鄭國彬
Kou-Bin Cheng
吳昌謀
Chang-Mou Wu
戴華山
Hua-Shan Tai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 156
中文關鍵詞: 同軸靜電紡絲PVP奈米銀奈米纖維
外文關鍵詞: Co-axial electrospinning, PVP, nanosilver, nanofiber film
相關次數: 點閱:337下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以單軸及同軸靜電紡絲製備出PVP/AgNO3奈米複合纖維膜,透過熱還原與紫外光還原將硝酸銀進行原位還原,最後獲得PVP/Ag奈米複合纖維膜。本研究中探討不同溶液參數的單軸同軸靜電紡絲之結果,以及比較熱還原與紫外光還原方式的影響,最後目標係將纖維膜阻抗值控制在可抗靜電範圍內。本研究分成紡絲溶液設計、靜電紡絲製程、還原前PVP/AgNO3纖維膜分析、及還原後PVP/Ag纖維膜分析四個部分。

    紡絲溶液設計的部分,本系統之溶液黏度要高於235mPas;電導度要低於161mS/cm才能順利紡絲。本研究使用Mw=1,300,000的聚乙烯咯烷酮Polyvinylpyrrolidone(PVP)及硝酸銀(AgNO3) 以1:1、1:1.5、1:2三種比例配製單軸紡絲溶液;同軸靜電紡絲之外層溶液為PVP:AgNO3=1:2,內層溶液則是AgNO315wt%的溶液。紫外光-可見光分析儀(UV-vis)檢測紡絲溶液顯示在溶液配置階段並無硝酸銀還原。

    再者,論及靜電紡絲製程,本研究以濕度控制裝置維持相對濕度於20,使高導電溶液能持續穩定靜電紡絲。另外本團隊將機台改裝為垂直式,以利同軸靜電紡絲時泰勒椎之穩定。溶液中少部分未被PVP包覆的硝酸銀會因製程之高電壓刺激而還原成金屬銀。

    接下來,分析PVP/AgNO3纖維膜的部分,以熱重損失分析儀(TGA)測得在190℃左右NO3¬─熱逸散及PVP側基之O裂解,而在500℃左右所有的C裂解僅剩下Ag,為後續進行熱還原之溫度提供依據。

    最後,分析還原後PVP/Ag纖維膜的部分,在高於PVP的Tg之熱還原溫度220℃下進行還原後,全數硝酸銀還原成銀並聚集成直徑約60-80nm的顆粒;而100℃及160℃則只有部分硝酸銀被還原,且銀顆粒直徑約10-30nm。另一方面,以220℃還原的奈米纖維膜比100℃及160℃的體積電阻率低了兩個數量級,其體積電阻率約5830~6820Ω-cm。然而,使用同軸靜電紡絲可使纖維膜中AgNO3的含量大幅提升,且在未還原前已有多數區域因為高電壓刺激而還原成奈米銀棒分散在纖維膜中。進一步熱還原在還原硝酸銀的同時也會破壞原本的銀棒結構;而紫外光還原能僅將銀棒之間的硝酸銀還原成銀,而不會破壞銀棒的存在。紫外光還原之同軸纖維膜體積電阻率為39.34~54.01Ω-cm,在抗靜電應用上具發展潛力。


    In this study, we prepared PVP/AgNO3 nanofiber film by single and co-axial electrospinning. We obtained PVP/Ag nanofiber film after reducing silver nitrate in situ by heat reduction and UV reduction. We investigated the results of different solution parameters by single and co-axial electrospinning. Besides, we discussed the effects of heat reduction and UV reduction. It is our final objective that resistivity of nanofiber film controlled within the range of antistatic. Our research could separate to four parts: electrospun solution design, electrospinning process, analysis of PVP/AgNO3 film, analysis of PVP/Ag film.

    Firstly, in electrospun solution design, it is important for stable electrospinning that the solution viscosity should be higher than 235mPas and the solution conductivity should be lower than 161mS/cm. We used Polyvinylpyrrolidone with Mw=1,300,000 and AgNO3 to prepare single electrospun solution with the ratio 1:1, 1:1.5, 1:2. In the other hand, the outer solution of co-axial electrospun solution was PVP:AgNO3=1:2;the inner one is 15wt% silver nitrate solution. It was proved that no reduction of silver nitrate by UV-vis spectrum during solution preparation.

    Secondly, in electrospinning process, high conductivity solution could stable electrospinning when relative humidity maintain in 20RH by humidity equipment. Moreover, we modified electrospinning machine to vertical type in order to keep stable Taylor cone when co-axial electrospinning processing. A little of silver nitrate without covering PVP reduced by high voltage stimulation during the process.

    Among characterization of PVP/AgNO3 film, the Thermogravimetry Analysis(TGA) results showed that thermal runaway of NO3¬─ and oxygen degraded on function group of PVP at 190℃. All the carbon degraded except silver at 500℃. This result provided the standard for further heating reduction temperature options.

    In this final installment, we summarized the characterization of PVP/AgNO3 film, silver nitrate totally reduced to silver and aggregated to particles with diameter 10-30nm at 220℃ which is higher than Tg of PVP. In contrast, a little silver nitrate were reduced and formed silver particle with diameter around 10-30nm at 100℃ and 160℃.On the other hand, the volume resistivity of 220℃ reduced film was two orders of magnitude lower than the film reduced at 100℃ and 160℃. It was around 5830~6820Ω-cm. However, co-axial electrospinning was applied for improving the amount of AgNO3 in the film. Without reduction, much silver nanorod distributed in the film which was formed by high voltage stimulation. Furthermore, heat reduction destroyed structure of silver nanorod as well as reduced silver nitrate. Instead, UV reduction totally reduced the silver nitrate around silver nanorod without breaking any nanostructure. The volume resistivity of co-axial film reduced by UV reduction was 39.34~54.01Ω-cm. The co-axial film reduced by UV reduction hold great potential in the field of antistatics.

    目錄Table of Contents 中文摘要 I Abstract III 目錄Table of Contents V 圖目錄List of Figures VIII 表目錄List of Tables XVI 中文論文 第一章 前言 1 1-1研究背景 1 1-2研究目的 3 第二章 文獻回顧 4 2-1靜電紡絲技術與原理 4 2-2靜電紡絲參數 6 2-2-1溶液參數 7 2-2-2工作參數 14 2-2-3環境參數 21 2-3 PVP保護機制 27 2-4 PVP/Ag 靜電紡絲 28 第三章 實驗內容 35 3-1材料 35 3-2儀器 36 3-2-1自改裝靜電紡絲機 36 3-2-2還原設備 37 3-2-3分析儀器 38 3-3實驗架構 39 3-3-1紡絲溶液設計 40 3-3-2靜電紡絲製程 41 3-3-3纖維膜還原前分析 42 3-3-4硝酸銀還原 42 3-3-5纖維膜還原後分析 42 第四章 結果與討論 43 4-1紡絲溶液設計 43 4-2單軸靜電紡絲 47 4-2-1纖維膜還原前分析 47 4-2-2熱還原 51 4-2-3紫外光還原 56 4-3同軸靜電紡絲 59 4-3-1熱還原之同軸纖維膜 60 4-3-2紫外光還原之同軸纖維膜 62 4-4體積電阻率 63 第五章 結論 64 第六章 未來展望 65 English Thesis 66 Chapter 1. Introduction 66 1-1 Background 66 1-2 Goals and Objectives 68 Chapter 2. Literature Review 69 2-1 Electrospinning Technique and Theory 69 2-2 Electrospinning Parameters 71 2-2-1 Solution Parameters 72 2-2-2 Process Parameters 79 2-2-3 Ambient Parameters 86 2-3 PVP Protection Mechanism 91 2-4 PVP/Ag Electrospinning 92 Chapter 3. Experimental 99 3-1 Materials 99 3-2 Instruments 100 3-2-1 Self-modified Electrospinning 100 3-2-2 Reduction Equipment 101 3-2-3 Analysis Instruments 102 3-3 Research Chart 103 3-3-1 Electrospun Solution Design 104 3-3-2 Electrospinning Process 105 3-3-3 Film Analysis before Reduction 106 3-3-4 Reduction of Silver Nitrate 106 3-3-5 Film Analysis after Reduction 106 Chapter 4. Results and Discussion 107 4-1 Electrospun Solution Design 107 4-2 Single Needle Electrospinning 111 4-2-1 Film Analysis before Reduction 111 4-2-2 Heat Reduction 115 4-2-3 UV Reduction 121 4-3 Coaxial Electrospinning 124 4-3-1 Heat Reduction of Coaxial Film 125 4-3-2 UV Reduction of Coaxial Film 127 4-4 Volume Resistivity 128 Chapter 5. Conclusions 129 Chapter 6. Further Study 130 參考文獻 References 131

    [1]Xie, J., et al. (2014). "Highly stable coated polyvinylpyrrolidone nanofibers prepared using modified coaxial electrospinning." Fibers and Polymers 15(1): 78-83.
    [2] Yu, D.-G., et al. (2012). "PVP nanofibers prepared using co-axial electrospinning with salt solution as sheath fluid." Materials Letters 67(1): 78-80
    [3] Khan, W. S., et al. (2013). "Electrical and Thermal Characterization of Electrospun PVP Nanocomposite Fibers." Journal of Nanomaterials 2013: 9.
    [4] Jiang, C., et al. (2016). "A polymer/metal core-shell nanofiber membrane by electrospinning with an electric field, and its application for catalyst support." RSC Advances 6(27): 22996-23007.
    [5] Shao, S., et al. (2011). "Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers." Biomaterials 32(11): 2821-2833.
    [6]Song, J., et al. (2011). "Direct electrospinning of Ag/polyvinylpyrrolidone nanocables." Nanoscale 3(12): 4966-4971.
    [7] Huang, L., et al. (2011). "Controlling electrospun nanofiber morphology and mechanical properties using humidity." Journal of Polymer Science Part B: Polymer Physics 49(24): 1734-1744.
    [8] Turner, D. T. and A. Schwartz (1985). "The glass transition temperature of poly(N-vinyl pyrrolidone) by differential scanning calorimetry." Polymer 26(5): 757-762.

    [9] Zhang, Z., et al. (1996). "PVP Protective Mechanism of Ultrafine Silver Powder Synthesized by Chemical Reduction Processes." Journal of Solid State Chemistry 121(1): 105-110.
    [10] Wang, H., et al. (2005). "Mechanisms of PVP in the preparation of silver nanoparticles." Materials Chemistry and Physics 94(2–3): 449-453.
    [11] Kugimoto, Y., et al. (2016). "Preparation and characterization of composite coatings containing a quaternary ammonium salt as an anti-static agent." Progress in Organic Coatings 92: 80-84.
    [12] Tsurumaki, A., et al. (2015). "Antistatic effects of ionic liquids for polyether-based polyurethanes." Electrochimica Acta 175: 13-17.
    [13] Iwata, T., et al. (2014). "Bis(trifluoromethanesulfonyl)imide-Type Ionic Liquids as Excellent Antistatic Agents for Polyurethanes." Macromolecular Materials and Engineering 299(7): 794-798.
    [14] Zhang, S., et al. (2013). "Antistatic behavior of PAN-based low-temperature carbonaceous fibers." Journal of Electrostatics 71(6): 1036-1040.
    [15] Wang, J., et al. (2012). "Preparation and characterization of permanently anti-static packaging composites composed of high impact polystyrene and ion-conductive polyamide elastomer." Composites Science and Technology 72(9): 976-981.
    [16] Gou, L., et al. (2007). "Convenient, Rapid Synthesis of Ag Nanowires." Chemistry of Materials 19(7): 1755-1760.

    [17] Xiong, Y., et al. (2006). "Poly(vinyl pyrrolidone):  A Dual Functional Reductant and Stabilizer for the Facile Synthesis of Noble Metal Nanoplates in Aqueous Solutions." Langmuir 22(20): 8563-8570.
    [18] Yongzhi, W., et al. (2006). "A convenient route to polyvinyl pyrrolidone/silver nanocomposite by electrospinning." Nanotechnology 17(13): 3304.
    [19] Ming, J., et al. (2007). "Large-scale fabrication of Ag nanoparticles in PVP nanofibres and net-like silver nanofibre films by electrospinning." Nanotechnology 18(7): 075605.
    [20] Moghe, A. K. and B. S. Gupta (2008). "Co‐axial Electrospinning for Nanofiber Structures: Preparation and Applications." Polymer Reviews 48(2): 353-377.
    [21] Reneker, D. H., et al. (2000). "Bending instability of electrically charged liquid jets of polymer solutions in electrospinning." Journal of Applied Physics 87(9): 4531-4547.
    [22] Fong, H., et al. (1999). "Beaded nanofibers formed during electrospinning." Polymer 40(16): 4585-4592.
    [23] Zuo, W., et al. (2005). "Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning." Polymer Engineering & Science 45(5): 704-709.
    [24] McKee, M. G., et al. (2004). "Correlations of Solution Rheology with Electrospun Fiber Formation of Linear and Branched Polyesters." Macromolecules 37(5): 1760-1767.

    [25] Mit-uppatham, C., et al. (2004). "Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter." Macromolecular Chemistry and Physics 205(17): 2327-2338.
    [26] Tan, S. H., et al. (2005). "Systematic parameter study for ultra-fine fiber fabrication via electrospinning process." Polymer 46(16): 6128-6134.
    [27] Arayanarakul, K., et al. (2006). "Effects of Poly(ethylene glycol), Inorganic Salt, Sodium Dodecyl Sulfate, and Solvent System on Electrospinning of Poly(ethylene oxide)." Macromolecular Materials and Engineering 291(6): 581-591.
    [28]Seeram, R., et al. (2005). "An introduction to Electrospinning and Nanofibers" World Scientific Publishing Co. Pte. Ltd.
    [29] Bognitzki, M., et al. (2001). "Nanostructured Fibers via Electrospinning." Advanced Materials 13(1): 70-72.
    [30] Megelski, S., et al. (2002). "Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers." Macromolecules 35(22): 8456-8466.
    [31] Subbiah, T., et al. (2005). "Electrospinning of nanofibers." Journal of Applied Polymer Science 96(2): 557-569.
    [32] Kiselev, P. and J. Rosell-Llompart (2012). "Highly aligned electrospun nanofibers by elimination of the whipping motion." Journal of Applied Polymer Science 125(3): 2433-2441.

    [33] Zhang, S., et al. (2009). "Gelatin nanofibrous membrane fabricated by electrospinning of aqueous gelatin solution for guided tissue regeneration." Journal of Biomedical Materials Research Part A 90A(3): 671-679.
    [34] Deitzel, J. M., et al. (2001). "The effect of processing variables on the morphology of electrospun nanofibers and textiles." Polymer 42(1): 261-272.
    [35] Wang, C., et al. (2006). "Effect of concentration, voltage, take‐over distance and diameter of pinhead on precursory poly (phenylene vinylene) electrospinning." Pigment & Resin Technology 35(5): 278-283.
    [36] Zhao, S., et al. (2004). "Electrospinning of ethyl–cyanoethyl cellulose/tetrahydrofuran solutions." Journal of Applied Polymer Science 91(1): 242-246.
    [37] Doshi, J. and D. H. Reneker (1995). "Electrospinning process and applications of electrospun fibers." Journal of Electrostatics 35(2–3): 151-160.
    [38] Buchko, C. J., et al. (1999). "Processing and microstructural characterization of porous biocompatible protein polymer thin films." Polymer 40(26): 7397-7407.
    [39] Vrieze, S., et al. (2008). "The effect of temperature and humidity on electrospinning." Journal of Materials Science 44(5): 1357-1362.
    [40] Wang, C., et al. (2007). "Electrospinning of Polyacrylonitrile Solutions at Elevated Temperatures." Macromolecules 40(22): 7973-7983.
    [41] Jeevika, A. and D. Ravi Shankaran (2015). "Seed-free synthesis of 1D silver nanowires ink using clove oil (Syzygium Aromaticum) at room temperature." Journal of Colloid and Interface Science 458: 155-159.
    [42] Schuette, W. M. and W. E. Buhro (2013). "Silver Chloride as a Heterogeneous Nucleant for the Growth of Silver Nanowires." ACS Nano 7(5): 3844-3853.
    [43] Kundu, S., et al. (2010). "Photochemical formation of electrically conductive silver nanowires on polymer scaffolds." Journal of Colloid and Interface Science 344(2): 334-342.
    [44] Hu, L., et al. (2010). "Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes." ACS Nano 4(5): 2955-2963.
    [45] Kim, J. S. (2007). "Reduction of Silver Nitrate in Ethanol by Poly(N-vinylpyrrolidone)." Journal of Industrial and Engineering Chemistry 13(4): 566-570.
    [46] Gebeyehu, M. B., et al. (2016). "Fabrication and characterization of continuous silver nanofiber/polyvinylpyrrolidone (AgNF/PVP) core-shell nanofibers using the coaxial electrospinning process." RSC Advances 6(59): 54162-54168.
    [47] Dong, G., et al. (2010). "Preparation and characterization of Ag nanoparticle-embedded polymer electrospun nanofibers." Journal of Nanoparticle Research 12(4): 1319-1329.

    QR CODE