簡易檢索 / 詳目顯示

研究生: 李威憲
Wei-Hsien Lee
論文名稱: 以延伸性因子基礎概念進行工程專案分析及控制之研究
Extended Factor-based Concept for Construction Project Evaluation and Control
指導教授: 王慶煌
Ching-Hwang Wang
口試委員: 呂守陞
Sou-Sen Leu
陳鴻銘
Hung-Ming Chen
郭斯傑
Sy-Jye Guo
王維志
Wei-Chih Wang
潘南飛
Nang-Fei Pan
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 134
中文關鍵詞: 模擬不確定性工期成本績效預測控制因子
外文關鍵詞: simualtion, uncertainty, duration, cost, performance, forecast, control, factor
相關次數: 點閱:182下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 營建管理之目標,通常可分為工期、成本及品質三方面,而實務上,營建管理之重點大都偏向於進度及成本二方面之規劃與控制。一般營造廠商雖然重視專案工期與成本之估算,但通常採用確定值(deterministic value)作為評估之基準,並未深入地去考慮不確定性因素對專案進度及成本預測所產生的影響,這必然常造成營造廠商管理上的困擾。據此,本研究擬探討目前相關研究並提出新的評估機制以改善現有研究之成果。

    在工期方面,本研究發現相關研究在探討因子之作用機制時,均忽略因子狀態之延續行為,而忽略該延續行為將低估工期估算值之變異程度。據此,本研究提出延伸性因子基礎機制(Extended Factor-based Mechanism)來切適地描述因子狀態可能的延續行為,並提出延伸性因子基礎機制之模擬程序(Simulation process for the Extended Factor-functioning Mechanism, SEFM)以便利管理者利用模擬將因子之延續行為納入分析之中。

    在成本方面,本研究發現單價之遲滯性未為相關研究所討論,而忽略該性質亦將造成管理者低估專案成本隱含之波動程度。因此,本研究提出二維成本單價模式(Two-Dimensional Cost Rate Model, 2D-CORA)以在成本分析過程中納入單價遲滯性,此外,本研究亦提出一對應之模擬程序,以利管理者在進行專案成本之模擬分析時,將成本遲滯性納入考量。

    在控制方面,本研究發現即有處理績效相關性之方式並不完善,可能對於績效偏差有過度校正之嫌,因此,本研究提出因子基礎之隨機S曲線(Factor-based Stochastic S-Curves, FaSS-Curves),用延伸性因子基礎之概念加入S曲線中,以加強相關研究之功能。相同,本研究亦提出一對應之模擬程序,方便管理者在專案之績效評估中使用FaSS-Curves。

    綜言之,本研究以改善現有營造專案工期及成本之規劃、控制機制為動機,採用因子基礎概念為研究出發點,分別建立並改善了既有專案工期規劃、專案成本規劃及專案績效控制機制之模式,可使管理者更完善地考量營造專案面對之環境,獲得更精確之評估值,更瞭解專案自身隱含的風險程度。


    Contractors usually adopt deterministic estimates to evaluate construction project durations and costs without the consideration of uncertainties. In the environment congested with uncertainties, it is not appropriate to evaluate or control construction projects with a deterministic estimate which is calculated without uncertainty concerns. Thus, this dissertation endeavors to enhance the existing evaluation mechanism for project durations, cost, and controlling.

    In the prospect of project durations, this dissertation finds that the extensions of factor statuses have been ignored in the factor-functioning mechanism. This ignorance leads to the underestimation of variation of simulated construction project durations. To deal with this shortcoming, the paper develops the Extended Factor-Functioning Mechanism to extend the original factor-functioning mechanism. Furthermore, this dissertation also proposes a corresponding simulation process to help project managers to introduce the extended factor statuses into simulating construction project durations

    In the prospect of project costs, this dissertation finds that little attention is paid to the rate stability. The neglect of the rate stability results in the inaccurate estimate of project cost variance. To tackle this problem, this dissertation proposes the Two-Dimensional Cost Rate Model (2D-CORA), to explicitly evaluate the variation due to the rate stability on project costs. In addition, a corresponding simulation process which can assist the project managers in conducting the rate stability into simulations of project costs is built as well.

    Finally, in the prospect of project controlling, this dissertation finds that the recommended method for dealing with the performance correlation employed in the previous studies has room for improving. The method ignores that performance deviations may be a normal consequence in the real world, and may lead to an arbitrary estimate of the project performance. Accordingly, this dissertation proposes the Factor-based Stochastic S-Curves (FaSS-Curve) which can properly handle the performance correlation to enhance the SS-Curves. Likewise, a corresponding simulation process is also developed to help project mangers to employ the FaSS-Curves.

    In sum, this dissertation endeavors to enhance the existing evaluation mechanism for project durations, costs, and controlling. To fulfill these purposes, three mechanisms are developed in the prospects of project durations, costs, and controlling, respectively. Using these mechanisms and their corresponding simulation processes, project mangers can comprehensively consider the construction environment. Thereafter, managers are able to analyze projects comprehensively, obtain accurate project estimates, and realize the inherent risk of projects they confront.

    TABLE OF CONTENTS ABSTRACT (EN)………………………………………………………...I ABSTRACT (CH) ……………………………………………………...IV ACKNOWLEDGEMENTS……………………………….…………...VII LIST OF FIGURES……………………………………………………XV LIST OF TABLES……………………………………………………XVII CHAPTER I INTRODUCTION…………………………………………1 1.1 Research Motivation……………………………………………….1 1.2 Research Objectives……………………………………………….1 1.3 Scope Definition…………………………………………………...2 1.3.1 Boundary Identification……………………………………...2 1.3.2 Research Hypotheses and Assumptions……………………..3 1.4 Research Process…………………………………………………..4 1.4.1 Problem Formulation………………………………………...5 1.4.2 Literature Review……………………………………………5 1.4.3 Model Construction………………………………………….6 1.4.4 Assessment…………………………………………………...6 1.5 Dissertation Outline…………………………………………………..7 CHAPTER II LITERAURE REVIEW…...……………………………....9 2.1 Simulation…………………………………………………………….9 2.2 Construction Project Duration..…………………………….……….10 2.3 Construction Project Costs...………………………………………..14 2.4 Construction Project Control...……………………………………...17 CHAPTER III EXTENDED FACTOR-FUNCTIONING MECHANISM ..........................................................................................19 3.1 Model Motivation and Inspiration…………………………………..19 3.2 Concept of the Extended Factor-Functioning Mechanism………….20 3.2.1 Original Factor-Functioning Mechanism….……………….20 3.2.2 Extended Factor-Functioning Mechanism…………………22 3.3 Mathematic Analysis of the Extensions of Factor Statuses………....28 3.3.1 Probing the Influence Indirectly……………………………29 3.3.2 Influences of the Extensions of Factor Statuses on Means ………………………………………………………………31 3.3.3 Influences of the Extensions of Factor Statuses on Variances ………………………………………………………………33 3.3.4 Summary of Probing………………………………………..35 3.4 Simulation Process for the Extended Factor-Functioning Mechanism ………………………………………………………………………35 3.4.1 Time-advance Mechanism………………………………….36 3.4.2 Simulation Steps...………………………………………….37 3.4.3 Approach to Setting Factor Periods……..………………….41 3.4.4 Computer Program for the SEFM Simulation Process...…...41 CHATPER IV TWO-DIMENSIONAL COST RATE MODEL (2D-CORA)..……………….……………….…………..46 4.1 Model Motivation and Inspiration………………………………..46 4.2 Concept of the 2D-CORA………………………………………..49 4.2.1 General Mechanism of Rates……………………………….49 4.2.2 Mechanism of the 2D-CORA………………………………50 4.3 Mathematic Analysis for the Influence of the Rate Stability..……56 4.3.1 Influence on the Material Cost..……………………………58 4.3.2 Influence on the Wage Cost...………………………………61 4.3.3 Influence on the Equipment Rental Cost.…………………..66 4.3.4 Summary of the Analysis Results..…………………………67 4.4 Simulation Process for the 2D-CORA……………………………69 4.4.1 Time-advance Mechanism………………………………….69 4.4.2 Steps of the Simulation Process...…………………………..70 CHAPTER V FACTOR-BASED SS-CURVES FOR PROJECT CONTROL.……………….……………….……………75 5.1 Model Motivation and Inspiration…...…………………………...75 5.2 Performance Correlation………………………………………….76 5.2 Concept of the FaSS-Curves……………………………………...79 5.3 Construction of the FaSS-Curves………………………………...80 5.3.1 Planning Stage...……………………………………………81 5.3.2 Controlling Stage………...…………………………………84 5.4 Simulation Process for the FaSS-Curves…………………………86 5.4.1 Planning Process……………………………………………86 5.4.2 Controlling Process…………………………………………89 CHAPTER VI CASE STUDY 6.1 Case Study for the Extended Factor-Functioning Mechanism…...91 6.1.1 Brief on the Illustrative Project…………………………….91 6.1.2 Benchmark Project Duration……………………………….94 6.1.3 Simulation for the Illustrative Project……………………...94 6.1.4 Verification on Activity Level……………………………...96 6.1.5 Verification on Project Level………………………………99 6.1.6. Impact of Duration Variance from Financial Aspect.…….102 6.2 Case Study for the 2D-CORA………………………….……….103 6.2.1 Brief on the Illustrative Project………………….………..104 6.2.2 Benchmark Project Cost………………………….……….108 6.2.3 Verification of Simulation Result…………………………108 6.2.4 Comparison with the Expected Overrun Cost…………….111 6.2.5 Analysis of a Realistic Project…………………………….112 6.3 Case Study for the FaSS-Curves………………………………...115 6.3.1 Brief on the Illustrative Project……………………………116 6.3.2 Four S curves for Comparison…………………………….119 6.3.3 Analysis of the Comparison……………………………….120 6.4 Summary of Case Study………………………………………...122 CHAPTER VII CONCLUSIONS AND RECOMMENDATIONS…....123 7.1 Review of Research Objectives…………………………………123 7.2 Summary………………………………………………………...123 7.3 Conclusions……………………………………………………..126 7.4 Recommendations………………………………………………127 BIBLIOGRAPHY……………………………………………………..130 VITA…………………………………………………………………...133 LIST OF FIGURES Figure 1.1 Research Flow Chart…………………………………………4 Figure 3.1 Illustration of the Original Factor-Functioning Mechanism …………………………………………………………………..21 Figure 3.2 Visualization of the Situation with No Extension Consideration …………………………………………………………………..24 Figure 3.3 Visualization of the Situation with Extension Consideration …………………………………………………………………..25 Figure 3.4 Illustration of the Extended Factor-Functioning Mechanism …………………………………………………………………..27 Figure 3.5 Mechanism of the New Simulation process…………………38 Figure 3.6 Frame of the Program for the New Simulation Process……..43 Figure 4.1 Cost indices of aggregate, rebar, and concrete in Taiwan…...48 Figure 4.2 Mechanism of the 2D-CORA……………………………….51 Figure 4.3 Cost indices of wage rate and equipment rental rate in Taiwan …………………………………………………………………..55 Figure 4.4 New simulation process for the 2D-CORA…………………71 Figure 5.1 Illustration of the FaSS-Curves……………………………...83 Figure 5.2 Simulation process of the FaSS-Curves……………………..88 Figure 6.1 Network for the Example Project……………………………92 Figure 6.2 Project Duration Analysis for 8 Groups of Factor Periods …………………………………………………………………101 Figure 6.3 Illustration of the example project…………………………104 Figure 6.4 Illustration of the diaphragm wall project………………….113 Figure 6.5 Network of the Illustrative Project…………………………117 Figure 6.6 Simulation result of four S curves models…………………121 LIST OF TABLES Table 6.1 Activity Information for the Example Project……………......93 Table 6.2 Factor Periods for 8 Groups………………………….............94 Table 6.3 Simulation Results for Activity “Drill well”.…………….......97 Table 6.4 F-test for Activity “Drill well”.……………..……………......98 Table 6.5 Analysis Results for the Example Project……………..........100 Table 6.6 F-test for the Example Project……………....………………100 Table 6.7 Activity information for the example project…………….....105 Table 6.8 Statistics on seven sets of parameters and simulation results ……………....……………....…………………………..............107 Table 6.9 F-test for the example project.…………...….………………110 Table 6.10 Simulation results for the diaphragm wall project.………...114 Table 6.11 Illustrative project information.……………….…………...118 Table 6.12 Simulation result…………………………………………..120

    AbouRizk, S. M. and Wales, R.J., “Combined discrete-event/continuous simulation for project planning,” Journal of Construction Engineering and Management, ASCE Vol. 123, No. 1, pp. 11-20 (1997).
    Ahuja, H. N. and Nandakumar, V., “Simulation model to forecast project completion time,” Journal of Construction Engineering and Management, ASCE, Vol. 111, No. 4, pp. 325-342 (1985).
    Barraza, G.. A., Black, W. E. and Mata, F., “Probabilistic Forecasting of Project Performance Using Stochastic S Curve,” Journal of Construction Engineering and Management, ASCE, Vol. 130, No. 1, pp. 25-32 (2004).
    Chau, K.W. 1995. Monte Carlo simulation of construction costs using subjective data. Construction Management and Economics, 13: 369-383.
    Cheng T. and Feng, C., “An effective simulation mechanism for construction operations,” Automation in Construction, Vol.12, No. 3, pp. 227-244 (2003).
    Carr, R. I., “Simulation of construction project duration,” Journal of the Construction Division, ASCE, Vol. 105 No. CO2, pp. 117-128 (1979).
    Diekmann, J.E. 1983. Probabilistic estimating: mathematics and applications. Journal of Construction Engineering and Management, 109: 297-308.
    Diekmann, J.E., and Featherman, W.D. 1998. Assessing cost uncertainty: lessons from environmental restoration projects. Journal of Construction Engineering and Management, 124: 445-451.
    Elkjaer, M. 2000. Stochastic budget simulation. International Journal of Project Management, 18: 139-147.
    Gabriel A. Barraza, W. Edward Back, Fernado Mata, “Probabilistic monitoring of project performance using SS-Curve,” journal of construction and management, ASCE, Volume 126, Issue 2, pp. 142-148 (2000)
    Gabriel A. Barraza, W Edward Black, and Fernando Mata, “Probabilistic Forecasting of Project Performance Using Stochastic S Curve,” journal of construction engineering and management, ASCE, Volume 130, Issue 1, pp. 25-32 (2004)

    Jeffrey S. Russell, Edward J. Jaselskis and Samuel P. Lawrence,” Continuous Assessment of Project Performance,” Journal of construction engineering and management, ASCE, Volume 123, Issue 1, pp. 64-71 (1997)

    Law, A. M. and W. D. Kelton (1991). Simulation Modeling and Analysis. New York,McGraw-Hill
    Murmis, Gustavo Marcelo, “S curve for monitoring project progress,” Project management journal, Vol.28 Issue 3, pp.29-35 (1997)
    Ofer Zwikael, Shlomo Globerson, Tzvi Raz, “ Evaluation of Models for Forecasting the Final Cost of a Project,” Project Management Journal, Volume 31,No.1,pp.53-57(2000)

    Padilla, E. M. and Carr, R. I., “Resource strategies for dynamic project management,” Journal of Construction Engineering and Management, ASCE, Vol. 117, No. 2, pp. 279-293 (1991).
    Shi, J., “Activity-based construction (ABC) modeling and simulation method,” Journal of Construction Engineering and Management, ASCE, Vol. 125, No. 5, pp. 354-360 (1999).
    Touran, A. 1993. Probabilistic cost estimating with subjective correlations. Journal of Construction Engineering and Management, 119: 58-71.
    Touran, A., and Wiser, E.P. 1992. Monte Carlo technique with correlated random variable. Journal of Construction Engineering and Management, 118: 258-270.
    Wang, W. C. and Demsetz, L. A., “Model for evaluating networks under correlated uncertainty-NETCOR,” Journal of Construction Engineering and Management, ASCE, Vol. 126, No. 6, pp. 458-466 (2000).
    Wang, W. C. and Demsetz, L. A., “Application Example for Evaluating Networks Considering Correlation,” Journal of Construction Engineering and Management, ASCE, Vol. 126, No. 6, pp. 467-474 (2000).
    Woolery, J. C. and Crandall, K. C., “Stochastic network model for planning scheduling,” Journal of Construction Engineering and Management, ASCE, Vol. 109, No. 3, pp. 342-354 (1983).
    Yang, I.T. 2005. Simulation-based estimation for correlated cost elements. International Journal of Project Management, 23: 275-282.

    QR CODE