簡易檢索 / 詳目顯示

研究生: 林敬硯
Jing-Yen Lin
論文名稱: 探討摻雜Al和Cu元素 對LaNi5合金儲氫性能之影響
Exploring the effect of Al and Cu dopants on LaNi5 hydrogen storage performance
指導教授: 陳士勛
Shih-Hsun Chen
口試委員: 丘群
Chun Chiu
林新智
Hsin-Chih Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 100
中文關鍵詞: 鑭鎳儲氫合金LaNi4.5Al0.5LaNi4.5Cu0.5儲氫性能循環穩定性
外文關鍵詞: Lanthanum Nickel hydrogen storage alloys, LaNi4.5Cu0.5 hydrogen storage alloy, LaNi4.5Cu0.5 hydrogen storage alloy, hydrogen storage performance, cyclic stability
相關次數: 點閱:167下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

因應能源缺乏及大量的空氣汙染,運用氫氣作為新能源選項為世界的趨勢。而將氫氣作為燃料時,其運輸及應用上需要儲氫材料將氫氣儲存,儲氫材料中使用儲氫合金是其中效果較好且安全性佳的選擇。其中LaNi5儲氫合金為相當適合之選項,LaNi5儲氫合金能夠應用於常溫常壓中,對於日常生活的運輸或車用是非常優秀的材料,但其應用時,會因使用次數上升,導致其儲氫效果愈來愈差,使用壽命因此減短。但若在其中摻雜些許原子半徑較Ni大之過渡元素,則能夠效提升其使用壽命,增加儲氫合金的循環穩定性。
因此本研究於LaNi5儲氫合金中摻入Al及Cu作為改性之材料,將5種儲氫合金LaNi5、LaNi4.75Al0.25、LaNi4.5Al0.5、LaNi4.75Cu0.25及LaNi4.5Cu0.5,通過50 ℃及100 ℃兩種溫度,研究其吸放氫情形觀察是否達到目的。經研究後發現,Al添加後的效果,於循環穩定性上十分優秀,不論是50 ℃或100 ℃中的表現,皆明顯優於其餘合金。但因Al的添加,會造成儲氫量為略遜於其餘合金,而添加之Al含量愈多,會使儲氫量下降愈多。在50 ℃時LaNi4.75Al0.25和LaNi4.5Al0.5儲氫量分別為0.989 wt%及0.969 wt%,而100 ℃時LaNi4.75Al0.25和LaNi4.5Al0.5的儲氫量為0.924 wt%和0.902 wt%,循環穩定性表現為LaNi4.5Al0.5效果較佳。而摻雜Cu的效果和Al類似,Cu含量升高會使循環穩定性增加,卻導致儲氫量下降,但在50 ℃時儲氫表現優異,LaNi4.75Cu0.25和LaNi4.5Cu0.5儲氫量達1.024 wt%和1.014 wt%,循環穩定性表現甚至優於含Al之儲氫合金;100 ℃時,含Cu之合金的儲氫性能表現類似LaNi5大幅降低,剩餘約0.75 wt%,而循環穩定性LaNi4.5Cu0.5表現較佳。
於LaNi5中摻雜Al及Cu的效果證明,較大原子填入時明顯循環穩定性提升,但會導致儲氫量的下降。50 ℃時,LaNi4.5Cu0.5儲氫效果最佳,循環穩定性表現甚至優於含 Al 之儲氫合金,而100 ℃時,LaNi4.5Al0.5儲氫量雖略遜於LaNi4.75Al0.25,但因優秀的循環穩定性,反而是較佳的選擇。


In response to the lack of energy and a lot of air pollution, the use of hydrogen as a new energy option is a trend in the world. When hydrogen is used as a fuel, its transportation and application require hydrogen storage materials to store hydrogen, and the use of hydrogen storage alloys in hydrogen storage materials is a better and safer choice. Among them, LaNi5 hydrogen storage alloy is a very suitable option. LaNi5 hydrogen storage alloy can be used in normal temperature and pressure, and is an excellent material for daily transportation or vehicle use. During its application, due to the increase in the number of uses, its hydrogen storage effect will be worse and worse, and the service life will be shortened accordingly. However, when some transition elements with a larger atomic radius than Ni are doped, the service life can be effectively improved and the cycle stability of the hydrogen storage alloy can be increased.
Therefore, in this study, Al and Cu were doped into LaNi5 hydrogen storage alloy as modified materials, and five kinds of hydrogen storage alloys were made: LaNi5、LaNi4.75Al0.25、LaNi4.5Al0.5、LaNi4.75Cu0.25 and LaNi4.5Cu0.5. Through the two temperatures of 50 ℃ and 100 ℃, the hydrogen absorption and desorption are studied to observe whether the purpose is achieved. After research, it is found that the effect of Al addition is very good in cycle stability, and the performance at 50 ℃ or 100 ℃ is obviously better than that of other alloys. However, due to the addition of Al, the hydrogen storage capacity is slightly lower than that of the other alloys, and the more Al content is added, the more the hydrogen storage capacity decreases. At 50 ℃, the hydrogen storage capacities of LaNi4.75Al0.25 and LaNi4.5Al0.5 are 0.989 wt% and 0.969 wt%, respectively. At 100 ℃, the hydrogen storage capacities of LaNi4.75Al0.25 and LaNi4.5Al0.5 are 0.924 wt% and 0.902 wt%, and the cycle stability is better for LaNi4.5Al0.5. The effect of doping Cu is similar to that of Al. The increase of Cu content will increase the cycle stability, but lead to a decrease in hydrogen storage. However, the hydrogen storage performance is excellent at 50 ℃, and the hydrogen storage capacity of LaNi4.75Cu0.25 and LaNi4.5Cu0.5 reaches 1.024 wt% and 1.014 wt%, and the cycle stability performance is even better than that of Al-containing hydrogen storage alloys. At 100 ℃, the hydrogen storage performance of the alloy containing Cu is similar to that of LaNi5, which is greatly reduced, and the remaining about 0.75 wt%, while the cycle stability of LaNi4.5Cu0.5 is better.
The effect of doping Al and Cu in LaNi5 proves that the cycle stability is obviously improved when larger atoms are filled, but it will lead to a decrease in the hydrogen storage capacity. At 50 ℃, LaNi4.5Cu0.5 has the best hydrogen storage effect, and the cycle stability performance is even better than that of Al-containing hydrogen storage alloys. At 100 ℃, although the hydrogen storage capacity of LaNi4.5Al0.5 is slightly lower than that of LaNi4.75Al0.25, it is a better choice due to its excellent cycle stability.

摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XI 第1章 緒論 1 第2章 文獻回顧 4 2.1 氫經濟 4 2.1.1 氫氣 4 2.1.2 綠能產氫 5 2.2 儲氫材料應用 7 2.2.1 氫運輸 7 2.2.2 氫汽車 7 2.2.3 氫分離 8 2.2.4 儲熱 8 2.2.5 熱泵浦 8 2.2.6 二次電池 9 2.2.7 燃料電池 10 2.2.8 儲氫技術與方法 15 2.3 儲氫材料的發展 19 2.3.1 儲氫材料 19 2.3.2 第三元素與雜質氣體影響 21 2.3.3 本研究之儲氫材料 23 2.4 儲氫合金吸放氫原理 26 2.4.1 熱力學性質 26 2.4.2 動力學性質 28 2.4.3 壓力-組成-溫度曲線(PCT曲線) 30 2.4.4 平台區斜率(plateau slope) 30 2.4.5 遲滯(hysteresis) 31 2.4.6 有效儲氫量 31 2.4.7 循環穩定性 32 2.5 文獻回顧與動機總結 33 第3章 實驗方法與設計 35 3.1 實驗流程 35 3.2 合金粉末製備 36 3.3 實驗使用設備及分析儀器 38 3.3.1 電弧熔煉爐 38 3.3.2 場發射掃描式電子顯微鏡 40 3.3.3 能量色散X射線光譜儀 41 3.3.4 X光繞射儀 42 3.3.5 Sievert-type 吸放氫量測系統 43 第4章 結果與討論 46 4.1 儲氫合金粉末分析 46 4.1.1 LaNi5-xAlx (X=0、0.25、0.5) XRD分析與元素分析 46 4.1.2 LaNi5-xCux (X=0.25、0.5) XRD分析與元素分析 50 4.2 吸放氫動力學及穩定性測定 53 4.2.1 LaNi5吸放氫動力學及穩定性測定 53 4.2.2 LaNi5-xAlx (X=0.25、0.5) 吸放氫動力學及穩定性測定 58 4.2.3 LaNi5-xCux (X=0.25、0.5) 吸放氫動力學及穩定性測定 66 4.3 循環吸放氫對儲氫合金影響 74 4.3.1 儲氫合金粉末形貌 74 4.3.2 吸放氫循環後XRD分析 77 第5章 結論 80 5.1 研究結果總結 80 5.2 未來展望 81 參考文獻 82

1. Dincer, I., Green methods for hydrogen production. International journal of hydrogen energy, 2012. 37(2): p. 1954-1971.
2. 吳晟, 明日綠色能源之星--氫能源, in 能源報導. 2004. p. 頁33.
3. Krishna, R., et al., Hydrogen storage for energy application, in Hydrogen storage. 2012, IntechOpen.
4. Joubert, J.-M., et al., LaNi5 related AB5 compounds: Structure, properties and applications. Journal of Alloys and Compounds, 2021. 862: p. 158163.
5. Pinatel, E.R., et al., Hydrogen sorption in the LaNi5-xAlx-H system (0≤ x≤ 1). Intermetallics, 2015. 62: p. 7-16.
6. Liu, J., et al., New insights into the hydrogen storage performance degradation and Al functioning mechanism of LaNi5-xAlx alloys. international journal of hydrogen energy, 2017. 42(39): p. 24904-24914.
7. Young, K., T. Ouchi, and B. Huang, Effects of annealing and stoichiometry to (Nd, Mg)(Ni, Al) 3.5 metal hydride alloys. Journal of Power Sources, 2012. 215: p. 152-159.
8. Young, K., T. Ouchi, and M. Fetcenko, Pressure–composition–temperature hysteresis in C14 Laves phase alloys: Part 1. Simple ternary alloys. Journal of alloys and compounds, 2009. 480(2): p. 428-433.
9. Liu, J., et al., Electrochemical characterization of LaNi5− xAlx (x= 0.1–0.5) in the absence of additives. Journal of power sources, 2006. 161(2): p. 1435-1442.
10. Spodaryk, M., N. Gasilova, and A. Züttel, Hydrogen storage and electrochemical properties of LaNi5-xCux hydride-forming alloys. Journal of Alloys and Compounds, 2019. 775: p. 175-180.
11. 鄭玫玲, 金、鉑擔載於二氧化鈦上進行光催化甲醇重組產氫之研究, in 材料科學與工程研究所. 2007, 國立中央大學. p. 1-77.
12. 黃啟裕, 纖維素產氫技術在生質能源之發展, in 農業生技產業季刊. 2008. p. 頁54-60.
13. Lodhi, M., Hydrogen production from renewable sources of energy. International journal of hydrogen energy, 1987. 12(7): p. 461-468.
14. Sandrock, G. and P. Goodell, Surface poisoning of LaNi5, FeTi and (Fe, Mn) Ti by O2, Co and H2O. Journal of the Less Common Metals, 1980. 73(1): p. 161-168.
15. Liebhafsky, H.A. and E.J. Cairns, Fuel cells and fuel batteries. Guide to their research and development. 1968.
16. Cohen, R. and J. Wernick, Hydrogen storage materials: properties and possibilities. Science, 1981. 214(4525): p. 1081-1087.
17. Smithrick, J.J. and P.M. O'Donnell, Nickel-hydrogen batteries-An overview. Journal of propulsion and power, 1996. 12(5): p. 873-878.
18. Zhao, X. and L. Ma, Recent progress in hydrogen storage alloys for nickel/metal hydride secondary batteries. International journal of hydrogen energy, 2009. 34(11): p. 4788-4796.
19. Shukla, A., S. Venugopalan, and B. Hariprakash, Nickel-based rechargeable batteries. Journal of Power Sources, 2001. 100(1-2): p. 125-148.
20. Fetcenko, M., et al., Recent advances in NiMH battery technology. Journal of Power Sources, 2007. 165(2): p. 544-551.
21. 曲新生 and 顏貽乙, 氫能源新經濟與燃料電池新世紀. 鑛冶, 2005. 49卷(1=189期): p. 頁27-32+26.
22. 曲新生, 氫能源應用與燃料電池發展現況. 經濟前瞻, 2005. 100卷: p. 頁113-121.
23. 陳振源, 未來的綠色能源── 燃料電池. 2005, 科學發展.
24. Yuan, X.-Z., et al., A review of functions, attributes, properties and measurements for the quality control of proton exchange membrane fuel cell components. Journal of Power Sources, 2021. 491: p. 229540.
25. E. Gamea, O., et al., Performance enhancement of direct methanol fuel cell using multi‐zone narrow flow fields. International Journal of Energy Research, 2019. 43(14): p. 8257-8274.
26. 小型二次電池市場與技術專輯. 1996: 工研院工業材料所.
27. 林怡均, 引發最大的使用能量--儲氫材料特性研究. 能源報導, 2006. 民95.02卷: p. 頁8-10.
28. Riis, T., et al., Hydrogen production and storage—R&D priorities and gaps. International Energy Agency-Hydrogen Co-Ordination Group-Hydrogen Implementing Agreement, 2006.
29. Luo, W. and E. Rönnebro, Towards a viable hydrogen storage system for transportation application. Journal of Alloys and Compounds, 2005. 404: p. 392-395.
30. Graham, T., XVIII. On the absorption and dialytic separation of gases by colloid septa. Philosophical transactions of the Royal Society of London, 1866(156): p. 399-439.
31. 吉成修, 水素吸蔵合金: 基礎と応用 (ヘッドライン: 新しい機能性を有する金属材料). 化学と教育, 2007. 55(9): p. 446-449.
32. Kuijpers, F.A., RCo5-H and related systems. 1973.
33. Reilly, J. and R. Wiswall, Formation and properties of iron titanium hydride. Inorganic Chemistry, 1974. 13(1): p. 218-222.
34. Zhou, L., Progress and problems in hydrogen storage methods. Renewable and Sustainable Energy Reviews, 2005. 9(4): p. 395-408.
35. Schlapbach, L., Hydrogen in intermetallic compounds I: Electronic, thermodynamic, and Crystallographic Properties, Preparation. 1988: Springer.
36. Osumi, Y., et al., Hydrogen absorption-desorption characteristics of Mm Ni Al M and Mm Ni Mn M alloys (Mm misch metal). Journal of the Less common Metals, 1983. 89(1): p. 287-292.
37. Sakai, T., et al., The influence of small amounts of added elements on various anode performance characteristics for LaNi2. 5Co2. 5-based alloys. Journal of the Less common Metals, 1990. 159: p. 127-139.
38. Sakai, T., M. Matsuoka, and C. Iwakura, Rare earth intermetallics for metal-hydrogen batteries. Handbook on the physics and chemistry of rare earths, 1995. 21: p. 133-178.
39. Eisenberg, F. and P. Goodell, Cyclic response of reversible hydriding alloys in hydrogen containing carbon monoxide. Journal of the Less common Metals, 1983. 89(1): p. 55-62.
40. Han, J.I. and J.-Y. Lee, Influence of oxygen impurity on the hydrogenation properties of LaNi5, LaNi4. 7Al0. 3 and MmNi4. 5Al0. 5 during long-term pressure-induced hydriding-dehydriding cycling. Journal of the Less Common Metals, 1989. 152(2): p. 329-338.
41. Endrzheevskaya, S., et al., Reactions of intermetallic compounds of the La-Ni-Cu system with hydrogen and hydrogen-containing gas mixtures. Soviet Powder Metallurgy and Metal Ceramics, 1984. 23(9): p. 710-713.
42. Lundin, C., F. Lynch, and C. Magee, A correlation between the interstitial hole sizes in intermetallic compounds and the thermodynamic properties of the hydrides formed from those compounds. Journal of the Less Common Metals, 1977. 56(1): p. 19-37.
43. Principi, G., et al., The problem of solid state hydrogen storage. Energy, 2009. 34(12): p. 2087-2091.
44. Yamaguchi, M. and E. Akiba, Ternary hydrides. ChemInform, 1995. 26(31): p. no-no.
45. Züttel, A., Materials for hydrogen storage. Materials today, 2003. 6(9): p. 24-33.
46. Martin, M., et al., Absorption and desorption kinetics of hydrogen storage alloys. Journal of Alloys and Compounds, 1996. 238(1-2): p. 193-201.
47. Sandrock, G., A panoramic overview of hydrogen storage alloys from a gas reaction point of view. Journal of alloys and compounds, 1999. 293: p. 877-888.
48. Lundin, C. and F. Lynch. A detailed analysis of the hydriding characteristics of LaNi5. in Energy 10; Annual Intersociety Energy Conversion and Engineering Conference. 1975.
49. Reilly Jr, J.J. and R.H. Wiswall Jr, Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorganic chemistry, 1968. 7(11): p. 2254-2256.
50. Sandrock, G., Development of low cost nickel-rare earth hydrides for hydrogen storage. Hydrogen energy system, 1979: p. 1625-1656.
51. Sandrock, G., The metallurgy and production of rechargeable hydrides, in Hydrides for energy storage. 1978, Elsevier. p. 353-393.
52. Zhang, Q., et al., Effects of annealing treatment on phase structures, hydrogen absorption–desorption characteristics and electrochemical properties of a V3TiNi0. 56Hf0. 24Mn0. 15Cr0. 1 alloy. Journal of alloys and compounds, 2000. 305(1-2): p. 125-129.
53. Armor, J.N., Environmental catalysis. Applied Catalysis B: Environmental, 1992. 1(4): p. 221-256.
54. Baker, H. and H. Okamoto, ASM handbook. vol. 3. alloy phase diagrams. ASM International, Materials Park, Ohio 44073-0002, USA, 1992. 501, 1992.
55. Kuhn, D. and H. Johnson, Transient analysis of hydrogen permeation through nickel membranes. Acta metallurgica et materialia, 1991. 39(11): p. 2901-2908.
56. Sandrock, G. and G. Thomas, The IEA/DOE/SNL on-line hydride databases. Applied Physics A, 2001. 72(2): p. 153-155.
57. Benham, M., et al., Inelastic neutron scattering studies of multiply cycled lanthanum-nickel hydride. Zeitschrift für Physikalische Chemie, 1986. 147(1_2): p. 219-229.
58. Matsumoto, T. and A. Matsushita, A new intermediate hydride in the LaNi5-H2 system studied by in situ X-ray diffractometry. Journal of the Less Common Metals, 1986. 123(1-2): p. 135-144.
59. Mordkovich, V., et al., Degradation of LaNi5 by thermobaric cycling in hydrogen and hydrogen-nitrogen mixture. International journal of hydrogen energy, 1990. 15(10): p. 723-726.
60. Goodell, P., Stability of rechargeable hydriding alloys during extended cycling. Journal of the Less Common Metals, 1984. 99(1): p. 1-14.
61. Sheft, I., D. Gruen, and G. Lamich, Current status and performance of the Argonne HYCSOS chemical heat pump system. Journal of the Less Common Metals, 1980. 74(2): p. 401-409.
62. Mintz, M., Z. Hadari, and M. Dariel, Hydrogenation of oxygen-stabilized Ti2MOx (M Fe, Co, Ni; 0⩽ x< 0.5) compounds. Journal of the Less Common Metals, 1980. 74(2): p. 287-294.
63. Buschow, K., Intermetallic compounds of rare-earth and 3d transition metals. Reports on Progress in Physics, 1977. 40(10): p. 1179.
64. Cohen, R., K. West, and J. Wernick, Degradation of Lani5 hydrogen-absorbing material by cycling. Journal of the Less Common Metals, 1980. 70(2): p. 229-241.
65. Cohen, R. and K. West, Intrinsic cycling degradation in LaNi5 and annealing procedures for re-forming the material. Journal of the Less Common Metals, 1983. 95(1): p. 17-23.
66. Gamo, T., et al., Life properties of Ti Mn alloy hydrides and their hydrogen purification effect. Journal of the Less Common Metals, 1983. 89(2): p. 495-504.

QR CODE