簡易檢索 / 詳目顯示

研究生: 蘇羿勳
YI-XUN SU
論文名稱: 奈米材料對3D列印微型微生物燃料電池的影響
Effect of nanomaterial on micron microbial fuel cell fabricated by 3D printing process
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 王金燦
Chin-Tsan Wang
江偉宏
Wei-Hung Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 101
中文關鍵詞: 微型微生物燃料電池3D列印碳布改質
外文關鍵詞: microbial fuel cell, 3D printing, carbon cloth modification
相關次數: 點閱:302下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 能源的耗竭問題到目前為止都還是人類很大的一個問題及挑戰,而微生物燃料電池則是目前其中一種具有潛力並且較為潔淨的發電方式。
    3D列印製程為目前發展趨勢的熱門研究之一,是以積層製造 (Additive Manufacturing) 為主的一種技術,透過3D列印可將微生物燃料電池 (Microbial Fuel Cell) 的結構進一步縮小,此製程更加能夠節省製造時間及成本,對於實驗會快速且方便許多。使用軟微影技術 (Soft Lithography) 來製成具有微柱結構之 (Polydimethylsiloxane) PDMS材料結構容易發生表面龜裂問題,故本研究利用3D列印製程製作出樹酯母模,可直接作為燃料電池主結構。
    微型燃料電池因為電極表面積非常小導致電力輸出不佳,在電極表面積接觸面積非常小之狀況下,電極材料的高導電率、高表面積、無腐蝕性等等性質就顯得相當重要。本研究對碳布電極使用碳奈米管/石墨烯分散液做塗佈 (Coating) 改質,得到最大電流密度1.652 A/m2及3.349 A/m2以及最大功率密度130.298 mW/m2及338.437 mW/m2。分別對未改質碳布最大電流密度提昇了25.9%及155.3%,和最大功率密度提昇了50.7%及291.6%。


    So far, energy depletion has been a serious issue and challenge for human beings. And power generation using microbial fuel cells is one of the power generation methods currently available which are clean and with potential

    Using 3D printing in manufacturing is now one of the hot topics for research. This technology is mainly based on additive manufacturing. Through 3D printing, the structure of microbial fuel cells can be further reduced. This process helps to save time and money. With this technology, experiments can be conducted in a more convenient manner with less time required. When applying the soft lithography technology to produce Polydimethylsiloxane materials with the micro-pillar structure, the issue of surface cracking is very common. Thus, this study produced the resin mode using the 3D printing technology, which can then be used as the main structure of fuel cells.

    Due to the very small surface area of the electrodes of micro fuel cells, the output power is quite low. When the surface area of the electrodes is very small, high electric conductivity, large surface area, and incorrosiveness of the material of the electrodes are very important. This study used CNT/graphene oxide dispersion solution for coating modification for the carbon cloth electrodes. The achieved maximum current densities were 1.652 A/m2 and 3.349 A/m2, which were 25.9% and 155.3% higher than those with the carbon cloth electrodes without modification, respectively. And the maximum power densities were 130.298 mW/m2 and 338.437 mW/m2, which were 50.7% and 291.6% higher than those with the carbon cloth electrodes without modification, respectively.

    摘要1 Abstract2 誌謝3 目錄4 圖目錄8 表目錄11 第一章 緒論11 1.1前言12 1.2研究動機13 1.3文獻回顧16 1.4文獻整理心得33 1.5研究目的35 第二章 微生物燃料電池組成及原理36 2.1微生物燃料電池之組成36 2.2微生物燃料電池工作原理38 2.3微生物燃料電池之性能39 2.3.1理論電位 (Theoretical electric potential)39 2.3.2極化曲線與功率曲線42 2.3.3庫倫效率 (Coulombic efficiency)43 2.4積層製造加工原理44 第三章實驗材料與方法46 3.1實驗流程46 3.2實驗藥品、材料47 3.2.1藥品試劑47 3.2.2菌種48 3.2.3分散液48 3.2.4電極48 3.3實驗儀器49 3.4微生物燃料電池製造流程51 3.4.1 3D列印電池結構 (母模) 製作51 3.4.2 質子交換膜清洗及保存58 3.5微生物燃料電池架構59 3.6碳布塗佈碳奈米管/石墨烯分散液60 第四章 結果與討論61 4.13D列印之結構61 4.2開路電位64 4.2.1Type-A (CC) 的測試68 4.2.2Type-B (CC+CNT) 的測試68 4.2.3Type-C (CC+Graphene) 的測試69 4.3極化曲線與功率密度70 4.3.1Type-A (CC) 的測試71 4.3.2Type-B (CC+CNT) 的測試72 4.3.3Type-C (CC+Graphene) 的測試73 4.3.4極化曲線及功率曲線比較74 4.4內阻值81 4.4.1Type-A (CC) 的測試83 4.4.2Type-B (CC+CNT) 的測試83 4.4.3Type-C (CC+Graphene) 的測試83 4.4.4內阻比較84 4.5庫倫效率86 4.5.1Type-A (CC) 的測試86 4.5.2Type-B (CC+CNT) 的測試87 4.5.3Type-C (CC+Graphene) 的測試87 4.5.4庫倫效率比較88 第五章 結論90 第六章 未來研究方向93 參考文獻94

    [1] N. Lewis, D. Nocera, ” Powering the planet : chemical challenges in
    solar energy utilization”, Proceedings of the National Academy of
    Sciences, Vol. 103, pp. 15729~15735 (2006).
    [2] 李敏,「各種發電方法的外部成本」,經濟能源委員會 (2006).
    [3] R. Lee, H. Crist, A. Riley, and K. MacLeod, ” Concentration and size
    of trace metal emission from a power plant, a steel plant, and cotton
    gin”, Environmental Science and Technology, Vol. 9, pp. 623-647
    (1975).
    [4] M. Dreicer, V. Tort, and H. Margerie, ” The external costs of the
    nuclear fuel cycle : Implementation in france”, Prepared for
    Directorate General XII of the Commission of the European
    Communities in the framework of the Extern E project (1995).
    [5] “2012 Fuel Cell Technologies Market Report”, Fuel Cell
    Technologies Office, Office of Energy Efficiency and Renewable
    Energy, U.S. Department of Energy (2013).
    [6] 吳孟兒,「淺談二階段調整乾電池回收清除處理費率」,行政院
    環境保護署 (2008).
    [7] 胡子揚,「小型微生物燃料電池」,碩士論文,國立宜蘭大學,
    宜蘭 (2011).
    [8] M. Hofmann, D. Nezich, A. Reina, and J. Kong, ” In-situ sample
    rotation as a tool to understand chemical vapor deposition growth of
    long aligned carbon nanotubes”, Nano Letters, Vol. 8, pp
    4122–4127.(2008).
    [9] A. Shallan, P. Smejkal, M. Corban, R. Guijt, and M. Breadmore, ”
    Cost-effective three-dimensional printing of visibly transparent
    microchips within minutes”, Analytical Chemistry, Vol. 86, pp
    3124–3130 (2014).
    [10] F. Qian, M. Baum, Q. Gu, and D. Morse, ” A 1.5 μL microbial fuel
    cell for on-chip bioelectricity generation”, Lab Chip, Vol. 9, pp.
    3076-3081 (2009).
    95
    [11] C. Siu, M. Chiao, ” A microfabricated PDMS microbial fuel cell”,
    Journal of Microelectromechanical Systems, Vol. 17, pp. 1329-1341
    (2009).
    [12] M. Chiao, K. Lam, and L. Lin, ” Micromachined microbial and
    photosynthetic fuel cells”, Journal of Micromechanics and
    Microengineering, Vol. 16, pp. 2547-2553 (2006).
    [13] S. Choi, J. Chae, ” An array of microliter-sized microbial fuel cells
    generating 100 μW of power”, Sensors and Actuators A, Vol. 177,
    pp. 10-15 (2012).
    [14] S. Choi, J. Chae, ” Optimal biofilm formation and power generation
    in a micro-sized microbial fuel cell (MFC)”, Sensors and Actuators A,
    Vol. 195, pp. 206-212 (2013).
    [15] F. Qian, Z. He, M. Thelen, and Y. Li, ”A microfluidic microbial
    fuel cell fabricated by soft lithography”, Bioresource Technology,
    Vol. 102, pp. 5836-5840 (2011).
    [16] 許博凱,「微型微生物燃料電池」,碩士論文,國立臺灣科技
    大學,台北 (2013).
    [17] H. Tsai, C. Wu, C. Lee, and E. Shih, ” Microbial fuel cell
    performance of multiwall carbon nanotubes on carbon cloth as
    electrodes”, Journal of Power Sources, Vol. 194, pp. 199-205 (2009).
    [18] Y. Zhang, J. Sun, Y. Hu, S. Li, and Q. Xu, ” Carbon
    nanotube-coated stainless steel mesh for enhanced oxygen reduction
    in biocathode microbial fuel cells”, Journal of Power Sources, Vol.
    239, pp. 169-174 (2013).
    [19] 吳振昌,「具奈米碳管之碳布電極應用於微生物燃料電池之產
    電效能」,碩士論文,國立海洋大學,基隆 (2008).
    [20] C. Erbay, X. Pu, W. Choi, Mi-Jin Choi, Y. Ryu, H. Hou, F. Lin, P.
    de Figueiredo, C. Yu, A. Han, ”Control of geometrical properties of
    carbon nanotube electrodes towards high-performance microbial fuel
    cells”, Journal of Power Sources, Vol. 280, pp. 347-354 (2015).
    [21] 劉永慧、魏拯華,「奈米科技與檢測技術」,工業技術研究院,
    (2003).
    96
    [22] L. Zhuang, Y. Yuan, G. Yang, and S. Zhou, ” In situ formation of
    graphene/biofilm composites for enhanced oxygen reduction in
    biocathode microbial fuel cells”, Electrochemistry Communications,
    Vol. 21, pp. 69-72 (2012).
    [23] J. Liu, Y. Qiao, C. Guo, S. Lim, H. Song, and C. Li, ”
    Graphene/carbon cloth anode for high-performance mediatorless
    microbial fuel cells”, Bioresource Technology, Vol. 114, pp. 275-280
    (2012).
    [24] C. Joseph Kirubaharan, K. Santhakumar, G. Gnana kumar, N.
    Senthilkumar, Jae-Hyung Jang, ”Nitrogen doped graphene sheets as
    metal free anode catalysts for the high performance microbial fuel
    cells”, Journal of Power Sources, Vol. 40, pp. 13061-13070 (2015).
    [25] K. Rabaey, W. Verstraete, “ Microbial fuel cells: novel
    biotechnology for energy generation”, Trends in Biotechnology, Vol.
    23, pp. 291-298 (2005).
    [26] Z. Du, H. Li, and T. Gu, ” A state of the art review on microbial fuel
    cells: A promising technology for wastewater treatment and
    bioenergy”, Biotechnology Advances, Vol. 25, pp. 464-482 (2007).
    [27] N. Trinh, J. Park, and B. Kim, ”Increased generation of electricity in
    a microbial fuel cell using Geobacter sulfurreducens”, Korean
    Journal of Chemical Engineering, Vol. 26, pp. 748-753 (2009).
    [28] 布魯斯.洛根(Bruce E. Logan)著, 馮玉杰, 王鑫等譯, “微生物燃
    料電池 MICROBIAL FUEL CELLS”, 化學工業出版社, 2009年10
    月.
    [29] 楊淯凱,「以積層製造技術光固化PCL-PEG-diacrylate之材料性
    質與組織工程支架成型性探討」,碩士論文,國立台灣科技大學,
    台北 (2013).
    [30] H. Philamore, J. Rossiter, P. Walters, J. Winfield, I.
    Ieropoulos, ”Cast and 3D printed ion exchange membranes for
    monolithic microbial fuel cell fabrication”, Journal of Power Sources,
    Vol. 289, pp. 91-99 (2015).
    97
    [31] A. Gunawardena, S. Fernando, F. To, ”Performance of a
    Yeast-mediated Biological Fuel Cell”, International Journal of
    Molecular Sciences, pp. 1893-1907 (2008).
    [32] S. Choi, H.-S. Lee, Y. Yang, P. Parameswaran, C. I. Torres, B. E.
    Rittmann and J. Chae, “A μL-scale micromachined microbial fuel
    cell having high power density”, Lab on a Chip, Vol. 11, pp.
    1110-1117 (2011).
    [33] S. Cheng, H. Liu, B. E. Logan, ”Increased Power Generation in a
    Continuous Flow MFC with Advective Flow through the Porous
    Anode and Reduced Electrode Spacing”, Environ. Sci. Technol., pp.
    2426–2432(2006).
    [34] C. Wang, M. Waje, X. Wang, J. M Tang, R. C Haddon, Y.
    Yan, ”Proton exchange membrane fuel cells with carbon nanotube
    based electrodes”, Nano letters, pp. 345-348 (2004).
    [35] M. A Correa-Duarte, N. Wagner, J. Rojas-Chapana, C. Morsczeck,
    M. Thie, M. Giersig, ”Fabrication and biocompatibility of carbon
    nanotube-based 3D networks as scaffolds for cell seeding and
    growth”, Nano letters, pp. 2233-2236 (2004).
    [36] Y. Zhang, G. Mo, X. Li, W. Zhang, J. Zhang, J. Ye, X. Huang, C.
    Yu, ”A graphene modified anode to improve the performance of
    microbial fuel cells”, Journal of Power Sources, Vol. 196, pp.
    5402-5407 (2011).
    [37] L. Xiao, J. Damien, J. Luo, H. Dong Jang, J. Huang, Z.
    He, ”Crumpled graphene particles for microbial fuel cell electrodes”,
    Journal of Power Sources, Vol. 208, pp. 187-192 (2008).
    [38] Y. He, Z. Liu, Xin-hui Xing, B. Li, Y. Zhang, R. Shen, Z. Zhu, N.
    Duan, ”Carbon nanotubes simultaneously as the anode and microbial
    carrier for up-flow fixed-bed microbial fuel cell”, Journal of Power
    Sources, Vol. 94, pp. 39-44 (2015).
    [39] Y. Hubenova, M. Mitov, ”Extracellular electron transfer in
    yeast-based biofuel cells: A review”, Journal of Power Sources, Vol.
    106, pp. 177-185 (2015).
    [40] H. Kaneshiro, K. Takano, Y. Takada, T. Wakisaka, T. Tachibana, M.
    Azuma, ”A milliliter-scale yeast-based fuel cell with high
    performance”, Journal of Power Sources, Vol. 83, pp. 90-96 (2014).
    [41] H. Peter Bennetto, John L. Stirling, K. Tanaka, Carmen A.
    Vega, ”Anodic reactions in microbial fuel cells”, Biotechnology and
    Bioengineering, Vol. 25, pp. 559-568 (1983).
    98
    [42] S. Wilkinson, J. Klar, S. Applegarth, ”Optimizing Biofuel Cell
    Performance Using a Targeted Mixed Mediator Combination”,
    Electroanalysis, Vol. 18, pp. 2001-2007 (2006).
    [43] R. Ganguli, B. S. Dunn, ”Kinetics of Anode Reactions for a
    Yeast-Catalysed Microbial Fuel Cell”, Fuel Cells, Vol. 9, pp. 44-52
    (2009).
    [44] S. Babanova, Y. Hubenova, M. Mitov, ”Influence of artificial
    mediators on yeast-based fuel cell performance”, Journal of Power
    Sources, Vol. 112, pp. 379-387 (2011).

    QR CODE