簡易檢索 / 詳目顯示

研究生: 江崇煊
Chung-Hsuan Chiang
論文名稱: 利用非傳統製程開發一仿生威利氏環腦動脈瘤醫療模型用於腦神經外科教育訓練
Creating a lifelike Willis Circle with Cerebral Aneurysm by Using a non-traditional fabrication process for training brain neurosurgery
指導教授: 陳品銓
Pin-Chuan Chen
口試委員: 劉偉修
Wei-Hsiu Liu
劉承賢
Cheng-Hsien Liu
高震宇
Chen-Yu Kao
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 181
中文關鍵詞: 仿生脈管系統腦動脈瘤醫療模型腦神經外科醫療教育訓練3D列印醫療模型模具設計彈性材料澆注仿生血管瘤仿生血管
外文關鍵詞: Lifelike Vascular System, Cerebral Aneurysm Biomodel, Neurosurgery, Medical Education Training, 3D Printing, Biomodel, Mold Design, Casting of Elastic Materials, Lifelike Aneurysm, Lifelike Blood Vessel
相關次數: 點閱:340下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多年來腦血管相關疾病是全世界十大死因的第二名,在不同種類的腦血管相關疾病中,腦中風是最危險的其中一種,其成因是因為顱內血管管壁病變,在血液不停的流動及衝擊下,導致動脈瘤破裂而造成中風。為了要研究血管管壁病變的原因、腦中風的成因以及探討如何預防腦中風,傳統上研究人員利用理論以及電腦模擬軟體來了解血液動力學與血管幾何形狀對於動脈瘤形成的影響。而目前在腦神經外科醫師之術前培訓上,大多是透過大體老師來讓學員們有完整的腦結構概念,以及跟隨資深醫師進入手術室學習手術過程,但是大體老師的取得不易、價格昂貴、且血管形貌和真正病患不盡相同,使得學員進入手術室真正執刀的機會也有限制。近年來有研發團隊利用3D列印技術製造人工血管,來做為實驗的平台及驗證模擬的結果,但是所列印出的管脈系統尺寸誤差大、透明度差、彈性不佳等,與實際脈管系統之結構仍有很大的差異,因此無法用於驗證模擬結果,導致研究結論不夠完善,甚至和臨床觀察的結果有相當大的落差。
    本研究與三軍總醫院腦神經外科合作,由臨床主治醫師說明顱內動脈瘤手術的步驟,手術教育訓練的需求,以及目前顱內動脈瘤研究的瓶頸,經雙邊討論後,本研究欲利用3D列印、模具設計、彈性材料澆注技術,開發一專業醫療模型,可做為腦神經外科醫師訓練開顱夾除腦血管瘤手術的訓練模擬器,此醫療模型包括頭顱、腦幹、大腦軟組織、頸動脈、以及一管壁厚度可控制之中空全透明的威利氏環腦血管(Circle of Willis)脈管系統,並在幾個腦血管瘤發生機率較高的血管區段製做血管瘤,做為訓練學員的教具。
    從實驗得知,本研究所開發的製程可以成功建構中空富彈性全透明且整體模型尺寸精度很高的威利氏腦動脈瘤仿生模型,這樣的技術可以延伸到製造體內其他部位的脈管系統,作為醫療研究的實際模型。在驗證本研究的威利氏腦動脈瘤仿生模型上,首先為將染色液體(做為血液)模擬血液流速打入模型內,可用來直接觀察液體在血管及動脈瘤內的流動現象,這一類的實驗往後可以延伸至研究血管的幾何形貌對於動脈瘤的形成,或是血管的幾何形貌對於動脈瘤壁上剪應力的關係。接著則是將此一的威利氏腦動脈瘤仿生模型,結合頭顱、腦幹以及腦部軟組織,以作為訓練實習醫生執行動脈瘤夾閉手術的練習模型,這一實驗將持續和三總腦神經外科合作,讓此模型能成為創新醫材、標準醫療教具。


    For many years, cerebrovascular diseases have been second leading cause of death around the globe. Among all the cerebrovascular diseases, strokes are the most dangerous. They are caused by intracranial vascular wall lesions which, under the constant flow and impact of blood, result in aneurysms that may cause and induce strokes. To investigate the causes of vascular wall lesions, strokes and the means of preventing strokes, researchers conventionally used theory and computer simulations to understand the influence of hemodynamics and vascular geometry on the formation of aneurysms. At present, most of the pre-operative training of neurosurgeons is to provide students with a complete concept of brain structure through the Cadaver, and follow the senior doctor to enter the operating room to learn the surgical process, but the acquisition of the Cadaver is not easy, the price is expensive and the shape of the blood vessel is different from the real human body, so the student's chance to get a real operation in the operating room is also limited. In recent years, a research and development team has used 3D printing technology to manufacture artificial blood vessels as a platform for experiments and to verify the results of simulations. However, the listed vascular system has large dimensional errors, poor transparency, and poor elasticity. The structure of the tube system is still very different from actual vascular system, so it cannot be used to verify the simulation results, resulting in insufficient research conclusions, and even a considerable gap with the clinical observations.
    In this collaborative effort with the Neurosurgery Department of the Tri-Service General Hospital under the National Defense Medical Center. A clinical physician explained the procedure of cerebral aneurysm surgery, the needs of surgical education and training, and the current obstacles in cerebral aneurysm research. Following discussion, we used the latest 3D printing, mold design, and the elastic material casting technology to develop medical models for use in training neurosurgeons in craniotomy and aneurysm clip operations. The model provides highly detailed and realistic brain stem, soft brain tissue, carotid arteries, and a hollow transparent Circle of Willis, in which the thickness of vascular walls can be controlled and aneurysms can be fabricated in multiple locations where they are likely to appear. The resulting model gives surgical trainees hands-on experience performing intricate tasks that is very similar to real-world situations.
    Experiments indicated that the process developed in this study could successfully construct completely transparent, hollow, elastic and high overall model dimensional accuracy Circle of Willis bionic models. This technique can be expanded to create other vascular systems inside our body to serve as actual models for medical research. We conducted two experiments to verify the applicability of the Willis Circle bionic models. The first experiment involved the use of dyed liquid (to serve as blood) to simulate blood flow in an aneurysm. This enabled us to directly observe the flow of liquid in the blood vessels and aneurysm. Similar experiments can be used to examine the influence of vascular geometry on the formation of aneurysms or on the shear-stress relationship in vascular walls. Next, this Willis brain aneurysm bionic model, combined with the skull, brain stem and brain soft tissue, is used as an exercise model for training interns to perform aneurysm clipping surgery. We will continue to work with the Neurological Surgery Department at the Tri-Service General Hospital to turn this model into a creative medical product and a standard teaching aid in medical education.

    摘要 I Abstract III 致謝 VI 目錄 VII 圖目錄 XII 表目錄 XX 第一章 前言 1 1.1研究背景 1 1.2 研究動機與目的 3 1.3 研究方法 6 1.4 論文架構 9 第二章 文獻回顧 12 2.1威利氏圓環與腦動脈瘤之簡介 12 2.1.1 威利氏圓環簡介 12 2.1.2 腦動脈瘤簡介 17 2.2 腦動脈瘤形成與破裂及其機械性質之相關研究 20 2.2.1 腦動脈瘤壁面剪應力對動脈瘤的影響 20 2.2.2 腦動脈瘤血管幾何形狀對動脈瘤的影響 26 2.2.3 腦動脈瘤管壁厚度對動脈瘤破裂的影響 30 2.2.4 PDMS材料與真實腦動脈瘤管壁材料機械性質比對研究 32 2.3 脈管系統立體模型製程相關研究 34 2.3.1 利用3D列印機直接列印出立體模型 34 2.3.2 利用3D列印機搭配翻模技術製作立體模型 37 2.4 腦動脈瘤手術模擬及教育訓練之相關研究 39 第三章 威利氏環腦動脈瘤脈管模型製程設計 41 3.1 威利氏環腦動脈瘤模具設計 45 3.1.1 威利氏環脈管模型之內模具設計與建立 45 3.1.2 威利氏環脈管模型之外模具設計與建立 48 3.2 威利氏環腦動脈瘤模具製作 54 3.2.1 3D列印整體技術材料噴印成型3D列印技術簡介 54 3.2.2 材料噴印成型3D列印技術之簡介與應用 56 3.2.3 多噴頭型噴蠟3D列印之威利氏腦動脈瘤內模具製作 58 3.2.4 聚合物噴射3D列印之威利氏腦動脈瘤外模具製作 64 3.3 威利氏環腦動脈瘤模型之PDMS灌注翻模製程 71 3.3.1 威利氏環腦動脈瘤內模具表面噴漆亮化製程 73 3.3.2 威利氏環腦動脈瘤模型灌注翻模製程 76 3.4 威利氏環腦動脈瘤模型之脫蠟溶解製程 80 第四章 腦動脈手術之術前訓練模型製作 84 4.1 術前訓練模型之病患頭顱製作 85 4.1.1 病患頭顱模型建立 85 4.1.2 病患頭顱模型之製作 88 4.2 術前訓練模型之病患腦部製作 90 4.2.1 病患腦部模型建立 90 4.2.2 病患腦部模型製作 92 4.3 結合後之術前訓練模型 95 第五章 研究設備 97 5.1 威利氏腦動脈瘤模型製程所需之設備、材料及軟體 97 5.2 術前訓練模型所需之設備、材料及軟體 101 5.3模型量測所需之設備及軟體 103 第六章 實驗方法 104 6.1 威利氏環腦動脈瘤模型幾何尺寸外型與透明度探討 106 6.1.1 威利氏環腦動脈瘤模型管壁厚度及內外幾何形狀比對分析 106 6.1.2 威利氏環腦動脈瘤模型及其他製程模型之透明度對比與探討 109 6.2 威利氏環腦動脈瘤術前訓練模型探討 112 6.2.1 威利氏環腦動脈瘤內部流體可視化系統 112 6.2.2威利氏環腦動脈瘤之術前訓練模擬 117 第七章 實驗結果與討論 119 7.1 威利氏環腦動脈瘤模型幾何尺寸外型與透明度探討 119 7.1.1 威利氏環腦動脈瘤模型管壁厚度及內外幾何尺度比對分析 119 7.1.2 威利氏環腦動脈瘤模型及其他製程模型之透明度對比與探討 126 7.2 威利氏環腦動脈瘤術前訓練模型探討 128 7.2.1 威利氏環腦動脈瘤內部流體可視化系統 128 7.2.2 威利氏環腦動脈瘤之術前訓練模擬 133 第八章 結論與未來展望 139 8.1 結論 139 8.2 未來展望 144 參考文獻 145 附錄 149 附錄A 立體光學顯微鏡下之威利氏腦動脈瘤模型內外管徑量測 149 附錄B 立體光學顯微鏡下之威利氏腦動脈瘤模型管壁厚度量測 154

    [1] 周敬展(2017)。利用3D列印模具和超音波溶解技術來製作全透明且非平面微流道晶片。國立臺灣科技大學機械工程系碩士論文,台北市。取館
    [2] 陳翊菁(2018)。利用非傳統機械製程建構專業醫療教育訓練之人工動脈瘤模型。國立臺灣科技大學機械工程系碩士論文,台北市。取館
    [3] Rosner, Julie, et al. "Neuroanatomy, Circle of Willis. " [Updated 2018 Nov 26]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; (2020)
    [4] https://emedicine.medscape.com/article/1877617-overview#a1
    [5] Koseki, Hirokazu et al. "Two diverse hemodynamic forces, a mechanical stretch and a high wall shear stress, determine intracranial aneurysm formation. " Translational Stroke Research, 11.1 (2020): 80-92.
    [6] Laarman, Melanie, et al. "Histological differences of the Vascular wall between sites with high and low prevalence of intracranial aneurysm. " Journal of Neuropathology & Experimental Neurology 78.7, 648-654. (2019)
    [7] https://www.medicalnewstoday.com/articles/156993
    [8] http://www2.cmu.edu.tw/~cmcmd/ctanatomy/clinical/SAH.html
    [9] https://www.epainassist.com/brain/brain-aneurysm-or-cerebral-aneurysm
    [10] Oshima, Marie, et al. "Finite element simulation of blood flow in the cerebral artery."Computer methods in applied mechanics and engineering 191.6-7 (2001): 661-671.
    [11] Castro, M. A., et al. "Hemodynamic patterns of anterior communicating artery aneurysms: a possible association with rupture." American journal of neuroradiology 30.2 (2009): 297-302.
    [12] Detmer, Felicitas J., et al. "Comparison of statistical learning approaches for cerebral aneurysm rupture assessment." International Journal of Computer Assisted Radiology and Surgery 15.1 (2020): 141-150.
    [13] Boussel, Loic, et al. "Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study." Stroke 39.11 (2008): 2997-3002.
    [14] Jiang, Pengjun, et al. (in press) "Hemodynamic characteristics associated with thinner regions of intracranial aneurysm wall." Journal of Clinical Neuroscience (2019).
    [15] Li, Miao, et al. "Hemodynamics in ruptured intracranial aneurysms with known rupture points." World neurosurgery 118 (2018): e721-e726.
    [16] Torii, Ryo, et al. "Fluid–structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes." Computer Methods in Applied Mechanics and Engineering 198.45-46 (2009): 3613-3621.
    [17] Lai, Simon Sui-Man, et al. "A joint computational-experimental study of intracranial aneurysms: Importance of the aspect ratio." Journal of Hydrodynamics 28.3 (2016): 462-472.
    [18] Antonov, Alexei, et al. "Proximal Stenosis Is Associated with Rupture Status in Middle Cerebral Artery Aneurysms." World neurosurgery 109 (2018): e835-e844.
    [19] Goertz, Lukas, et al. "Impact of aneurysm shape and neck configuration on cerebral infarction during microsurgical clipping of intracranial aneurysms." Journal of neurosurgery 1.aop (2019): 1-9.
    [20] Fung, Christian, et al. "Anatomical evaluation of intracranial aneurysm rupture risk in patients with multiple aneurysms." Neurosurgical review 42.2 (2019): 539-547.
    [21] Kataoka, Kazuo, et al. "Structural fragility and inflammatory response of ruptured cerebral aneurysms: a comparative study between ruptured and unruptured cerebral aneurysms." Stroke 30.7 (1999): 1396-1401.
    [22] Kadasi, Laith M., et al. "Cerebral aneurysm wall thickness analysis using intraoperative microscopy: effect of size and gender on thin translucent regions." Journal of neurointerventional surgery 5.3 (2013): 201-206.
    [23] Sherif, Camillo, et al. "Evaluation of cerebral aneurysm wall thickness in experimental aneurysms: comparison of 3T-MR imaging with direct microscopic measurements." Acta neurochirurgica 156.1 (2014): 27-34.
    [24] Shang, Eric K., et al. "Local wall thickness in finite element models improves prediction of abdominal aortic aneurysm growth." Journal of vascular surgery 61.1 (2015): 217-223.
    [25] Steiger, Hans J., et al. "Strength, elasticity and viscoelastic properties of cerebral aneurysms." Heart and vessels 5.1 (1989): 41-46.
    [26] Konno, T., et al. "Rapid 3-dimensional models of cerebral aneurysm for emergency surgical clipping." No shinkei geka. Neurological surgery 44.8 (2016): 651-660.
    [27] Ryan, Justin R., et al. "Cerebral aneurysm clipping surgery simulation using patient-specific 3D printing and silicone casting." World neurosurgery 88 (2016): 175-181.
    [28] Meyer, Wolfdietrich, et al. "Soft polymers for building up small and smallest blood supplying systems by stereolithography." Journal of functional biomaterials 3.2 (2012): 257-268.
    [29] Itagaki, Michael W. "Using 3D printed models for planning and guidance during endovascular intervention: a technical advance." Diagnostic and Interventional Radiology 21.4 (2015): 338.
    [30] Mashiko, Toshihiro, et al. "Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping." World neurosurgery 83.3 (2015): 351-361.
    [31] Kono, Kenichi, et al. "Preoperative simulations of endovascular treatment for a cerebral aneurysm using a patient-specific vascular silicone model." Neurologia medico-chirurgica 53.5 (2013): 347-351.
    [32] Wang, Liang, et al. "Three-dimensional intracranial middle cerebral artery aneurysm models for aneurysm surgery and training." Journal of Clinical Neuroscience 50 (2018): 77-82.
    [33] 鄭正元等(2017)。3D列印積層製造技術與應用(初版)。全華圖書股份有限公司
    [34] 國立台灣科技大學 3D列印專題講座”AM 製造程序”,台灣科技大學機械系 鄭逸琳 副教授
    [35] https://www.tanerxun.com/principle-of-3d-printing-mj/.html
    [36] https://www.3dhubs.com/knowledge-base/introduction-material-jetting-3d-printing/
    [37] https://3dmart.com.tw/tutorials/3dhubs-3d-printing-technologies-overview#%E6%9D%90%E6%96%99%E5%99%B4%E5%A1%97%E6%88%90%E5%9E%8B%E6%8A%80%E8%A1%93
    [38] https://www.3dsystems.com/software/3d-sprint#freeTrial
    [39] Lee, Jessamine Ng, et al. "Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices." Analytical chemistry 75.23 (2003): 6544-6554.
    [40] https://www.kisspng.com/png-peristaltic-pump-concrete-pump-hose-gas-volume-pum-1458693/
    [41] http://www2.cmu.edu.tw/~cmcmd/ctanatomy/clinical/cerebralaneurysm.html
    [42] Zarrinkoob, Laleh, et al. "Blood flow distribution in cerebral arteries." Journal of Cerebral Blood Flow & Metabolism 35.4 (2015): 648-654.

    無法下載圖示 全文公開日期 2025/08/11 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE