簡易檢索 / 詳目顯示

研究生: Tran Vuong Gia Dai
Tran Vuong Gia Dai
論文名稱: 以3D列印製備含石墨烯之多孔層並應用於太陽能除鹽淨水程序
Solar-Powered Water Desalination by Using 3D-Printed Graphene/Resin Porous Layers
指導教授: 何明樺
Ming-Hua Ho
口試委員: 王志逢
Chih-Feng Wang
洪維松
Wei-Song Hung
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 92
中文關鍵詞: GrapheneDesalination
外文關鍵詞: Graphene, Desalination
相關次數: 點閱:270下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 被動式太陽能除鹽(passive solar-powered desalination)程序因具有節省能源與環境友善等特點,已廣被注意。為求達到最佳的太陽能轉換效率,此程序中的太陽能吸收層應該要在物理與化學特徵上都被妥善設計,然而,發泡或鹽析之類的傳統加工方法並不容易控制太陽能吸收層的結構。在本研究中,我們使用光固化型3D列印精細地設計並製備太陽能吸收層的孔洞結構,探討吸收層構型對能量轉換的影響,此外,也討論石墨烯添加所造成的效應。
    在第一部分的研究中,我們設計了數種多孔結構,包括直管狀、圓錐狀、鋸齒狀與輪狀結構,各具有受控制的孔洞直徑、孔隙度與線徑,並調整石墨烯的添加量。根據列印結果,含石墨烯的光固化樹脂在光固化列印中具有高精細度,誤差小於5%,顯示石墨烯/樹脂的混成物有高度可列印性。我們所列印的各種多孔層在自然狀態中可以維持結構與漂浮性超過十七天,代表這些3D列印的光吸收層可以被長時間的使用於除鹽程序中。
    我們在一個太陽光照的強度下進行揮發測試,結果顯示添加石墨烯能有效促進水揮發效率。比較不同孔洞結構造成的影響,高孔洞曲折度能最有效地提高揮發速率,就本實驗設計的結構而言,錐體結構提升揮發的效果最大,可達到的最高太陽能熱轉化效率達90%。此外,我們也在70oC 與濕度95%的狀態下進行揮發測試,發現多孔光吸收層能維持相同的揮發效率至少24小時,代表在一般環境中可維持其狀態約52天。本研究證實了多孔結構在揮發除鹽效應中的影響,對製備高效率的太陽能吸收裝置具有相當的幫助。


    The passive solar-powered desalination attracted much attention due to its energy-saving and environmental-friendly functions. The transfer of solar energy to heat is the most crucial issue in this process. Thus, the properties of the solar-energy absorbing layer must be well designed and tailored. However, it was not easy to control the porous structures of the solar-energy absorbing layer just by using conventional processes, such as foaming or porogen leaching. In this research, the porous absorbers were precisely designed and fabricated using a photo-curing 3D printer, allowing us to investigate the structural effects on energy transferring efficiency. The graphene additive was also applied in the porous layer for further enhancement of heat generation.
    In the first part, several porous structures, including straight channels, cone, zigzag, rhombus and wheel-shaped channels with various intersection grooves, were fabricated for the energy transferring layer. The pore size, porosity, and wire diameter were controlled, followed by the adjustment of graphene amounts. According to the design sketch and images of printed products, the errors of porous structures were less than 5%. The results proved that the structures created in this research were highly accurate, which was achieved by a DLP 3D printer. More importantly, the resin with graphene additive was highly printable. The floatability of the porous layer was longer than 17 days under natural conditions, revealing the stability of this solar-energy absorbing layer for long-term operation.
    The evaporation tests were performed under 1 sun irradiation. The results showed that the addition of graphene promoted water evaporation significantly. The temperature of the porous layer was increased by 54.05% with the addition of 20% graphene. Comparing evaporation from different porous structures, the evaporation rate greatly improved with the light reflection from the structure of pores. Thus, the cone structures in this research caused higher evaporation than the others did, where the highest solar thermal efficiency was about 90%. Besides, the evaporation rates of all absorber were not decreased for at least 24 hours under 70oC and 95% humidity, which was identical to the stability for 52 days in actual environment. This study identified the effects of porous structures systematically, which was crucial in producing a highly effective solar-energy absorbing layer for the desalination process.

    TABLE OF CONTENT ABSTRACT iii ACKNOWLEDGMENT v TABLE OF CONTENT vii LIST OF FIGURE ix LIST OF TABLE xiii CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE REVIEW 3 2.1 Shortage of water – Overview 3 2.2 Renewable energy 4 2.3 Solar Energy 6 2.4 Solar Evaporation and Seawater Desalination 9 2.5 Photothermal Materials 14 2.6 Motivation and Objectives 29 CHAPTER 3 MATERIAL AND EXPERIMENTAL PROCEDURE 31 3.1 Chemical and Material 31 3.2 Experimental Apparatus 32 3.3 Experimental Procedure 32 Preparation of NMPG/resin composites (graphene/resin) 33 3.4 Layers Model Design 34 3.5 Layers Fabrication Process 39 3.6 Solar Evaporation Experiment 40 3.7 Evaluation of Solar Thermal Energy Conversion Efficiency 41 3.8 Accelerated Aging Test 42 CHAPTER 4 RESULT AND DISCUSSION 43 4.1 Fabrication Assessment 43 4.2 Floating Periods 47 4.3 Thermal-harvesting ability 48 4.4 Evaporation Rate 62 4.5 Accelerated Aging Test Result 62 CHAPTER 5 CONCLUSION 81 REFERENCES 82

    Hu, Y. and D. Lindo-Atichati, Experimental equations of seawater salinity and desalination capacity to assess seawater irrigation. Sci Total Environ, 2019. 651(Pt 1): p. 807-812.
    2. Reuther, C. G., Saline solutions: the quest for fresh water. Environ Health Perspect, 2000. 108(2): p. A78-80.
    3. Loo, S. L., L. Vasquez, U. C. Paul, L. Campagnolo, A. Athanassiou and D. Fragouli, Solar-Driven Freshwater Generation from Seawater and Atmospheric Moisture Enabled by a Hydrophilic Photothermal Foam. ACS Appl Mater Interfaces, 2020. 12(9): p. 10307-10316.
    4. Oki, T. and S. Kanae, Global hydrological cycles and world water resources. Science, 2006. 313(5790): p. 1068-1072.
    5. Nagata, Y., K. Usui and M. Bonn, Molecular Mechanism of Water Evaporation. Phys Rev Lett, 2015. 115(23): p. 236102-236102.
    6. Worden, J., D. Noone, K. Bowman, T. Tropospheric Emission Spectrometer Science and c. Data, Importance of rain evaporation and continental convection in the tropical water cycle. Nature, 2007. 445(7127): p. 528-532.
    7. Turkenburg, W. C. and A. Faaij, Renewable energy technologies. Journal, 2000.
    8. Kothari, R., V. V. Tyagi and A. Pathak, Waste-to-energy: A way from renewable energy sources to sustainable development. Renewable and Sustainable Energy Reviews, 2010. 14(9): p. 3164-3170.
    9. N.L. Panwar, S. C. K., Surendra Kothari,, Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews, 2011. 15(3): p. 1513-1524.
    10. Chen, C., Y. Kuang and L. Hu, Challenges and Opportunities for Solar Evaporation. Joule, 2019. 3(3): p. 683-718.
    11. Dupavillon, J. L. and B. M. Gillanders, Impacts of seawater desalination on the giant Australian cuttlefish Sepia apama in the upper Spencer Gulf, South Australia. Mar Environ Res, 2009. 67(4-5): p. 207-218.
    12. Service, R. F., Desalination Freshens Up. Science, 2006. 313(5790): p. 1088-1088.
    13. Schiermeier, Q., Water: purification with a pinch of salt. Journal, 2008.
    14. Von Medeazza, G. M., “Direct” and socially-induced environmental impacts of desalination. Desalination, 2005. 185(1-3): p. 57-70.
    15. Dreizin, Y., A. Tenne and D. Hoffman, Integrating large scale seawater desalination plants within Israel’s water supply system. Desalination, 2008. 220(1-3): p. 132-149.
    16. Chao, W., X. Sun, Y. Li, G. Cao, R. Wang, C. Wang and S. H. Ho, Enhanced Directional Seawater Desalination Using a Structure-Guided Wood Aerogel. ACS Appl Mater Interfaces, 2020. 12(19): p. 22387-22397.
    17. Semiat, R., Energy issues in desalination processes. Environmental science & technology, 2008. 42(22): p. 8193-8201.
    18. Fritzmann, C., J. Löwenberg, T. Wintgens and T. Melin, State-of-the-art of reverse osmosis desalination. Desalination, 2007. 216(1-3): p. 1-76.
    19. Elimelech, M. and W. A. Phillip, The future of seawater desalination: energy, technology, and the environment. Science, 2011. 333(6043): p. 712-717.
    20. Service, R. F., Desalination Freshens Up. Science, 2006. 313(5790): p. 1088-1090.
    21. Shannon, M. A., P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Mariñas and A. M. Mayes, Science and technology for water purification in the coming decades. Nanoscience and Technology, 2010: p. 337-346.
    22. Cao, S., Q. Jiang, X. Wu, D. Ghim, H. Gholami Derami, P.-I. Chou, Y.-S. Jun and S. Singamaneni, Advances in solar evaporator materials for freshwater generation. Journal of Materials Chemistry A, 2019. 7(42): p. 24092-24123.
    23. Lewis, N. S., Research opportunities to advance solar energy utilization. Science, 2016. 351(6271): p. 1920-1920.
    24. Zhu, L., M. Gao, C. K. N. Peh, X. Wang and G. W. Ho, Self-Contained Monolithic Carbon Sponges for Solar-Driven Interfacial Water Evaporation Distillation and Electricity Generation. Advanced Energy Materials, 2018. 8(16): p. 1702149-1702149.
    25. Huang, X., Y.-H. Yu, Oscar L. de Llergo, S. M. Marquez and Z. Cheng, Facile polypyrrole thin film coating on polypropylene membrane for efficient solar-driven interfacial water evaporation. RSC Advances, 2017. 7(16): p. 9495-9499.
    26. Thoai, D. N., Q. T. Hoai Ta, T. T. Truong, H. Van Nam and G. Van Vo, Review on the recent development and applications of three dimensional (3D) photothermal materials for solar evaporators. Journal of Cleaner Production, 2021. 293: p. 126122-126122.
    27. Raza, A., J.-Y. Lu, S. Alzaim, H. Li and T. Zhang, Novel receiver-enhanced solar vapor generation: review and perspectives. Energies, 2018. 11(1): p. 253-253.
    28. Stepanovich, A., Combinatorial development of porous semiconductor thin film photoelectrodes for solar water splitting by dealloying of binary and ternary alloys, 2014.
    29. Jiang, Q., L. Tian, K.-K. Liu, S. Tadepalli, R. Raliya, P. Biswas, R. R. Naik and S. Singamaneni, Bilayered Biofoam for Highly Efficient Solar Steam Generation. Advanced Materials, 2016. 28(42): p. 9400-9407.
    30. Cao, S., Q. Jiang, X. Wu, D. Ghim, H. G. Derami, P.-I. Chou, Y.-S. Jun and S. Singamaneni, Advances in solar evaporator materials for freshwater generation. Journal of Materials Chemistry A, 2019. 7(42): p. 24092-24123.
    31. Wang, Z., Y. Liu, P. Tao, Q. Shen, N. Yi, F. Zhang, Q. Liu, C. Song, D. Zhang and W. Shang, Bio‐inspired evaporation through plasmonic film of nanoparticles at the air–water interface. Small, 2014. 10(16): p. 3234-3239.
    32. Wang, Y., C. Wang, X. Song, M. Huang, S. K. Megarajan, S. F. Shaukat and H. Jiang, Improved light-harvesting and thermal management for efficient solar-driven water evaporation using 3D photothermal cones. Journal of Materials Chemistry A, 2018. 6(21): p. 9874-9881.
    33. Han, Y., Y. Jiang and C. Gao, High-Flux Graphene Oxide Nanofiltration Membrane Intercalated by Carbon Nanotubes. ACS Applied Materials & Interfaces, 2015. 7(15): p. 8147-8155.
    34. Mu, J., C. Hou, H. Wang, Y. Li, Q. Zhang and M. Zhu, Origami-inspired active graphene-based paper for programmable instant self-folding walking devices. Science Advances, 2015. 1(10): p. e1500533-e1500533.
    35. Bae, K., G. Kang, S. K. Cho, W. Park, K. Kim and W. J. Padilla, Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nature Communications, 2015. 6(1): p. 10103-10103.
    36. Keshavarz Hedayati, M. and M. Elbahri, Antireflective coatings: conventional stacking layers and ultrathin plasmonic metasurfaces, a mini-review. Materials, 2016. 9(6): p. 497-497.
    37. Li, X., J. Li, J. Lu, N. Xu, C. Chen, X. Min, B. Zhu, H. Li, L. Zhou and S. Zhu, Enhancement of interfacial solar vapor generation by environmental energy. Joule, 2018. 2(7): p. 1331-1338.
    38. Shi, Y., R. Li, Y. Jin, S. Zhuo, L. Shi, J. Chang, S. Hong, K.-C. Ng and P. Wang, A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule, 2018. 2(6): p. 1171-1186.
    39. Nika, D., S. Ghosh, E. Pokatilov and A. Balandin, Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite. Applied Physics Letters, 2009. 94(20): p. 203103-203103.
    40. Pop, E., V. Varshney and A. K. Roy, Thermal properties of graphene: Fundamentals and applications. MRS Bulletin, 2012. 37(12): p. 1273-1281.
    41. Zhang, P., J. Li, L. Lv, Y. Zhao and L. Qu, Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. Acs Nano, 2017. 11(5): p. 5087-5093.
    42. Balandin, A. A., Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 2011. 10(8): p. 569-581.
    43. Stankovich, S., D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff, Graphene-based composite materials. Nature, 2006. 442(7100): p. 282-286.
    44. Xiao, W., Y. Liu and S. Guo, Composites of graphene oxide and epoxy resin assuming a uniform 3D graphene oxide network structure. RSC advances, 2016. 6(90): p. 86904-86908.
    45. Yu, A., P. Ramesh, M. E. Itkis, E. Bekyarova and R. C. Haddon, Graphite nanoplatelet− epoxy composite thermal interface materials. The Journal of Physical Chemistry C, 2007. 111(21): p. 7565-7569.
    46. Li, Y., H. Zhang, H. Porwal, Z. Huang, E. Bilotti and T. Peijs, Mechanical, electrical and thermal properties of in-situ exfoliated graphene/epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing, 2017. 95:p. 229-236.
    47. Shahrubudin, N., T. C. Lee and R. Ramlan, An Overview on 3D Printing Technology: Technological, Materials, and Applications. Procedia Manufacturing, 2019. 35: p. 1286-1296.
    48. Low, Z.-X., Y. T. Chua, B. M. Ray, D. Mattia, I. S. Metcalfe and D. A. Patterson, Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. Journal of membrane science, 2017. 523: p. 596-613.
    49. Sniderman, B., P. Baum and V. Rajan, 3D opportunity for life: Additive manufacturing takes humanitarian action, 2016.
    50. Yang, F., Y. K. Yang and H. Zheng, Application of 3D printing in diagnosis and treatment of congenital heart disease. Chinese Journal of Interventional Imaging and Therapy, 2014. 11(9): p. 629-631.
    51. Quan, H., T. Zhang, H. Xu, S. Luo, J. Nie and X. Zhu, Photo-curing 3D printing technique and its challenges. Bioactive Materials, 2020. 5(1): p. 110-115.
    52. James, M. F. and A. Y. Lars, Display system architectures for digital micromirror device (DMD)-based projectors. Proc.SPIE, 1996.
    53. Rahman, M. M., Statistical analysis of the digital micromirror devices hinge sag phenomenon. Journal, 2002.
    54. Wang, J., Y. Liu, X. Qian and X. Ma, Effect of organic dyes on DLP-3D printing photosensitive resin. Chem. Reagents, 2018. 40: p. 528-532.
    55. Zhu, M., Y. Li, G. Chen, F. Jiang, Z. Yang, X. Luo, Y. Wang, S. D. Lacey, J. Dai, C. Wang, C. Jia, J. Wan, Y. Yao, A. Gong, B. Yang, Z. Yu, S. Das and L. Hu, Tree-Inspired Design for High-Efficiency Water Extraction. Advanced Materials, 2017. 29(44): p. 170107-1704107.
    56. Shallan, A. I., P. Smejkal, M. Corban, R. M. Guijt and M. C. Breadmore, Cost-Effective Three-Dimensional Printing of Visibly Transparent Microchips within Minutes. Analytical Chemistry, 2014. 86(6): p. 3124-3130.
    57. Ni, G., G. Li, S. V. Boriskina, H. Li, W. Yang, T. Zhang and G. Chen, Steam generation under one sun enabled by a floating structure with thermal concentration. Nature Energy, 2016. 1(9): p. 1-7.
    58. Zhu, M., C. Zhang, D. Wu and H. Zhu, Carbonized daikon for high efficient solar steam generation. Solar Energy Materials and Solar Cells, 2019. 191: p. 83-90.
    59. Yin, Z., H. Wang, M. Jian, Y. Li, K. Xia, M. Zhang, C. Wang, Q. Wang, M. Ma and Q.-s. Zheng, Extremely black vertically aligned carbon nanotube arrays for solar steam generation. ACS applied materials & interfaces, 2017. 9(34): p. 28596-28603.
    60. Fang, M., K. Wang, H. Lu, Y. Yang and S. Nutt, Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. Journal of Materials Chemistry, 2009. 19(38): p. 7098-7105.
    61. Rafiee, M. A., J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu and N. Koratkar, Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content. ACS Nano, 2009. 3(12): p. 3884-3890.
    62. Eshaghi, A. and A. A. Aghaei, Transparent hydrophobic micro-nano silica-silica nano-composite thin film with environmental durability. Materials Chemistry and Physics, 2019. 227: p. 318-323.
    63. Sprenger, S., Nanosilica-Toughened Epoxy Resins. Polymers, 2020. 12(8): p. 1777-1777
    64. Zhou, S., S. Huang, Y. Ming, Y. Long, H. Liang, S. Ruan, Y.-J. Zeng and H. Cui, A scalable, eco-friendly, and ultrafast solar steam generator fabricated using evolutional 3D printing. Journal of Materials Chemistry A, 2021. 9(15): p. 9909-9917.
    65. Zhao, L., J. Tian, Y. Liu, L. Xu, Y. Wang, X. Fei and Y. Li, A novel floatable composite hydrogel for solar evaporation enhancement. Environmental Science: Water Research & Technology, 2020. 6(1): p. 221-230.
    66. Xu, N., X. Hu, W. Xu, X. Li, L. Zhou, S. Zhu and J. Zhu, Mushrooms as efficient solar steam‐generation devices. Advanced Materials, 2017. 29(28): p. 1606762-1606762.
    67. Xie, T., Xu, K., Yang, B., & He, Y., Effect of pore size and porosity distribution on radiation absorption and thermal performance of porous solar energy absorber. Science China Technological Sciences, 62(12): p. 2213-2225.
    68. Wang, Y., L. Zhang and P. Wang, Self-Floating Carbon Nanotube Membrane on Macroporous Silica Substrate for Highly Efficient Solar-Driven Interfacial Water Evaporation. ACS Sustainable Chemistry & Engineering, 2016. 4(3): p. 1223-1230.
    69. Li, Y., T. Gao, Z. Yang, C. Chen, W. Luo, J. Song, E. Hitz, C. Jia, Y. Zhou and B. Liu, 3D‐printed, all‐in‐one evaporator for high‐efficiency solar steam generation under 1 sun illumination. Advanced materials, 2017. 29(26): p. 1700981-1700981.
    70. Liu, K.-K., Q. Jiang, S. Tadepalli, R. Raliya, P. Biswas, R. R. Naik and S. Singamaneni, Wood–Graphene Oxide Composite for Highly Efficient Solar Steam Generation and Desalination. ACS Applied Materials & Interfaces, 2017. 9(8): p. 7675-7681.
    71. Finnerty, C., L. Zhang, D. L. Sedlak, K. L. Nelson and B. Mi, Synthetic Graphene Oxide Leaf for Solar Desalination with Zero Liquid Discharge. Environmental Science & Technology, 2017. 51(20): p. 11701-11709.
    72. Shi, L., Y. Wang, L. Zhang and P. Wang, Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation. Journal of Materials Chemistry A, 2017. 5(31): p. 16212-16219.
    73. Hu, X., W. Xu, L. Zhou, Y. Tan, Y. Wang, S. Zhu and J. Zhu, Tailoring Graphene Oxide-Based Aerogels for Efficient Solar Steam Generation under One Sun. Advanced Materials, 2017. 29(5): p. 1604031-1604031.

    無法下載圖示 全文公開日期 2031/09/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE