簡易檢索 / 詳目顯示

研究生: 凃志芳
Jhih-fang Tu
論文名稱: 人型機器人分散式即時控制及步行分析
Distributed Real-Time Control and Walking Analysis of Humanoid Robot
指導教授: 施慶隆
Ching-long Shih
口試委員: 劉昌煥
Chang-huan Liu
李文猶
Wen-yo Lee
洪士哲
October Hung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 72
中文關鍵詞: 人形機器人零力矩點控制區域網路匯流排分散式即時控制步行控制抗干擾站立控制
外文關鍵詞: Humanoid Robot, ZMP, CAN Bus, Distributed Real-Time Control, Walking Control, Anti-Disturbance Stance Control
相關次數: 點閱:256下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要目的為增加人形機器人步行速度,及受到外力干擾時,增強人形機器人的站立穩定性。人形機器人KHR-1由日本KONDO公司所製造,其機構由雙腳、雙臂和頭部所構成,分別擁有十個自由度、六個自由度和一個自由度。人形機器人之微控制器由四顆dsPIC30F 4012及一顆TMS320F2812所組成,並且利用控制區域網路匯流排使得五顆數位訊號控制器彼此連線溝通。人形機器人控制系統採用多處理器架構,以致於整個系統執行速度增加。本文也使用感測器系統包含陀螺儀、加速度計、力量感測器及電位計,並且將感測器的類比訊號轉換成數位訊號,經過數位濾波器處理之後,獲得人形機器人軀幹傾斜位置及速度和腳底壓力。本文假設重心集中在人形機器人之臀部中心,由於這樣可以簡化複雜系統,因此更容易規劃及實現步行。在步行控制方面,適當的步態參數和重心軌跡規劃可以改善步行穩定性,並且從壓力感測器得知實際的零力矩點軌跡落在雙腳或單腳支撐面內,因此達到平滑行走。在抗干擾站立控制方面,透過感測器系統回授人形機器人軀幹之合成傾斜角訊號,並由PD控制器即時改善人形機器人在站立時的穩定性。


    The purpose of this thesis is to increase the speed of biped dynamic walking and to enhance humanoid robot’s standing stability when it is excited by external outside forces. The humanoid robot KHR-1, made by KONDO, consists of ten servo motors on the two legs, six servo motors on the two hands and one servo motor on the head. The controller of the humanoid robot is consist of four Microchip dsPIC30F4012s and one TI TMS320F2812, and a CAN Bus connects them. Multi-processor structure is adopted in the robot system so that the overall execution speed is increased. The motion sensing system includes gyros, accelerometers, force sensors and potentiometers to measure the body’s inclination angle and COP on the feet. It is assumed that the COG is concentrated on the center of robot’s hip to simplify the walking control system. In this case, suitable gait parameters and COG trajectory planning can be easily planned and improve walking stability and ensure the ZMP falls in the single foot or feet supporting surface from FSR. In the anti-disturbance stance control case, the robot system feedback the tilt of its trunk, and real-time improve standing stability by a PD controller.

    第一章 緒論 1.1研究目的與動機 1.2文獻回顧 1.3論文架構 第二章 人形機器人硬體設計與軟體規劃 2.1機構描述 2.2伺服馬達 2.3壓力感測器 2.4加速度計規格 2.5陀螺儀規格 2.6控制板設計 2.7系統軟體規劃 2.8人形機器人控制系統架構圖 第三章 控制區域網路 3.1控制區域網路之起源 3.2控制區域網路與其他通訊協定之比較 3.3控制區域網路之通訊協定方式 3.4控制區域網路之架構與運作 3.5控制區域網路之資料傳輸方式 3.6控制區域網路之各欄框介紹 3.7控制區域網路之錯誤種類 3.8控制區域網路之時序分析 3.9控制區域網路之優缺點 第四章 人形機器人運動學 4.1人形機器人座標系統 4.2人形機器人運動學 4.2.1運動學介紹 4.2.2順向運動學公式 4.2.3逆向運動學公式 4.2.4定義各個伺服馬達歸零位置 4.3人形機器人重心 4.4零力矩點 4.5零力矩點與站立重心量測 第五章 人形機器人步行分析 5.1人類步行分析 5.2人形機器人步行分析 5.2.1靜態步行分析 5.2.2動態步行分析 5.3仿人類零力矩點軌跡 5.4步行軌跡規劃 5.4.1擺動腳軌跡規劃 5.4.2臀部中心軌跡規劃 5.4.3步行軌跡模擬結果 5.5感測器系統之數位訊號處理 5.6步行控制方法 5.7抗干擾之維持站立控制方法 第六章 實驗結果 6.1控制區域網路傳輸實驗結果 6.2傾斜角合成訊號實驗結果 6.3人形機器人步行實驗結果 6.4人形機器人站立抗干擾實驗結果 第七章 結論與未來展望 7.1結論 7.2未來展望 參考文獻

    [1] C. A. Klein and C. H. Huang, “Review of Pseudoinverse Control for use with Kinematically Redundant Manipulators,” IEE Trans. Systems, Man, and Cybernerics, vol. 13, pp. 245-250, 1983.
    [2] A. L. Kun and C. H. Miller, “Adaptive Dynamic Balance of a Biped Robot Using Neural Networks,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 240-245, 1996.
    [3] Q. Li, A. Takanishi, and I. Kato, “Learning Control Compensative Trunk Motion for a Biped Walking Robot Based on ZMP Stability Criterion, “ IEEE/RSJ Int. Conf. on Intelligent Robots and System, pp. 597-603, 1992.
    [4] C. S. Lin, P. R. Chang, and J. Y. S. Luh, “Formulation and Optimization of Cubic Polynomial Joint Trajectories for Industrial Robots,” IEEE Trans. on Automatic Control, vol. AC-28, no. 12, pp. 1066-1073, Dec.1983.
    [5] T. McGeer, “Passive Walking with Knees,” Proc. IEEE Int. Conf. on Robotics and Automation, vol.3, pp. 1640-1645, 1990.
    [6] H. Minakatand Y. Hori, “Realtime Speed-changeable Biped Walking by Controlling the Parameter of Virtual Inverted Pendulum,” IEEE IECON’94, Bologna, pp. 1009-1014, 1994.
    [7] A. Morishima, Hun-ok Lin, and A. Takanishi, “Development of a Humanoid Robot Having 2-DOF Waist and 2-DOF Trunk,” Proc. IEEE-RAS Int. Conf, on Humanoid Robots, pp. 333-338, Dec. 2005.
    [8] K. Nagasaka, H. Inoue, and M. Inaba, “Dynamic Walking Pattern Generation for a Humanoid Robot Based on Optimal Gradient Method,” Proc. IEEE Int. Conf. on System Cybern, vol. 6, pp. 908-913, 1999.
    [9] Y. Nakamura and H. Hanafusa, “Inverse Kinematics Solutions with Singularity Robustness for Robot Manipulator Control,” ASME Journal of Dynamic Systems, Measurement and Control, 108, pp. 163-171, 1986.
    [10] M. Rostami and G.. Bessonnet, “Impactless Sagittal Gait of a Biped Robot During the Single Support Phase,” Proc. IEEE Int. Conf. on Robotics and Automation, vol. 2, pp. 1385-1391, 1998.
    [11] L. Roussel, C. Canudas-de-Wit, and A. Goswami, “Generation of Energy Optimal Complete Gait Cycles for Biped Robots,” Proc. IEEE Int. Conf. on Robotics and Automation, vol. 3, pp. 2036-2041, 1998.
    [12] F. M. Silva and J. A. T. Machado, “Energy Analysis During Biped Walking,” Proc. IEEE Int. Conf. on Robotics and Automation, vol. 1, pp. 59-64, 1999.
    [13] T. Sugihara, “Mobility Enhancement Control of Humanoid Robot Based on Reaction Force Manipulation via Whole Body Motion,” Ph.D Dissertation, Department of Mechano-Engineering, University of Tokyo, 2003.
    [14] M. Vukobratovic and O. Timcenko, “Contributions of the Synthesis of Biped Gait,” IEEE Trans. Biomed. Eng. BME-16, pp. 1-6, 1969.
    [15] M.Vukobratovic, “Zero-Moment-Point Thirty Five Years of Its Life,” Int. Journal of Humanoid robotics, vol. 1, no. 1, pp. 157-173, 2004.
    [16] M. Vukobratovic, D. Andric, and B. Borovac, “How to Achieve Various Gait Patterns from Single Nominal,” Int. Journal of Advanced Robotic Systems, vol. 1, no. 2, pp. 99-108, 2004.
    [17] J.Yamaguchi, A. Takanishi, and I. Kato, “Development of a Biped Walking Robot Compensating for Three-axis Moment by Trunk Motion,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 561-566, July 1993.
    [18] J. Yamaguchi, E. Soga, S. Inoue, and A. Takanishi, “Development of a Bipedal Humanoid Robot Control Method of Whole Body Cooperative Dynamic Biped Walking,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 361-367, 1999.
    [19] C. Zhu, Y. Tomizawa, X. Luo, and A. Kawamura, “Biped Walking with Variable ZMP, Frictional Constraint, and Inverted Pendulum Model,” Proc. IEEE Int. Conf. on Robotics and Biomimetics, pp. 425-430, Aug. 2004.
    [20] Q. Huang and K. Yokoi, “Planning Walking Patterns for a Biped Robot,” IEEE Trans. On Robotics and Automation, vol. 17, no. 3, pp. 280-289, June 2001.
    [21] K. Erbatur, A. Okazaki, and K. Obiya, “A Study on the Zero Moment Point Measurement for Biped Walking Robots,” 7th Int Workshop on Advanced Motion Contorl, pp. 431-436, July 2002.
    [22] Y. Fujimoto, S. Obata, and A. Kawamura, “Robust Biped Walking with Active Interaction Control Between Foot and Ground,” Proc. IEEE Int. Conf. on Robotics and Automation, vol. 3, pp. 2030-2035, May 1998.
    [23] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa, “Biped Walking Pattern Generation by Using Preview Control of Zero-Moment Point,” Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 1620-1626, 2003.
    [24] Takanishi, A., Lim, H., Tsuda, M. and Kato, I., “Realization of Dynamic Biped Walking Stabilized by Trunk Motion on a Sagittally Uneven Surface,” Proceedings of IEEE International Workshop on Intelligent Robots and Systems (IROS ’90), pp.323-330 1990.
    [25] Kagami, S., Nishiwaki, K., Kitagawa, T., Sugihiara, T, Inaba, M. and Inoue, H., “A Fast Generation Method of a Dynamically Stable Humanoid Robot Trajectory with Enhanced ZMP Constraint,” Proceedings of IEEE International Conference on Humanoid Robotics, 2000.
    [26] Y. Choi, B. You and S. Oh, “On the Stability of Indirect ZMP Controller for Biped Robot Systems,” Proceedings of IEEE International Conference on Intelligent Robots and Systems, 2004.
    [27] S. Kajita and K. Tani, “Experimental Study of Biped Dynamic Walking in the Linear Inverted Pendulum,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 2885-5819, 1995.
    [28] S. Kajita, O. Matsumoto, and M. Saigo, “Real Time 3D Walking Pattern Generation for a Biped Robot with Telescopic Legs,” Proc, IEEE Int. Conf. on Robotics and Automation, pp. 2299-2306, May 2001.
    [29] S. Kajita, F. Kanehiro, and K. Kaneko, “a Realtime Pattern Generation for Biped Walking,” Proc. IEEE Int. Conf. on Robotics and Automation, May 2002.
    [30] S. Kagami, “A Fast Dynamically Equilibrated Walking Trajectory Generation Method of Humanoid Robot,” Autonomous Robotics, vol. 12, no. 1, pp. 71-82, 2002.
    [31] T. Ishida, “Development of a Small Biped Entertainment Robot QRIO,” Proc. IEEE Int. Conf. on Robotics and Automation.
    [32] A. Konno, N. Kato, S. Shirata and T. Furuta, “Development of a Light-weight Biped Humanoid Robot,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robotics and Systems, 2000.
    [33] E.R. Dunn and R.D. Howe, “Foot Placement and Velocity Control in Smooth Bipedal Walking,” Proc. IEEE Int. Conf. on Robotics and Automation, vol. 1, pp. 578-583, April 1996.
    [34] S. Kagami, M. Mochimaru, Y. Ehara, N. Miyata, K. Nishiwaki, T. Kanade, and H. Inoue, “Measurement and Comparison of Human and Humanoid Walking,” Proc. IEEE Int. Conf. Symposium on Computational Intelligence in Robotics and Automation, vol. 2, pp. 918-922, 2003.
    [35] Q. Huang, S. Sugano, and K. Tanie, “Stability Compensation Of A Mobile Manipulator By Manipulator Motion:Feasibility and Planning,” Advanced Robotics, vol. 13, no. 1, pp. 25-40, 1999.
    [36] B.H. Hwang, J.S. Kong, B.H. Lee, J.G. Kim and U.Y. Huh, “ZMP Compensation Algorithm for Stable Posture of a Humanoid Robot,” ICCAS, 2005.
    [37] J. Rufino, “An Overview of the Controller Area Network”, In Proceedings of the CiA Forum CAN for Newcomers, January 1997.
    [38] ISO. Road Vehicles - Controller Area Network (CAN) - Part 4:Time Triggered Communication, 2001.
    [39] A. Oliveira, P. Fonseca, V. Sklyarov and A. Ferrari, “Anobject- Oriented Framework for CAN Protocol Modeling and Simulation,” In FET2003: 5th IFAC International Conferenceon Fieldbus Systems and their Applications, pp. 243–248, July 2003.
    [40] F. Hartwich and A. Bassemir, “The Configuration of the CAN Bit Timing”, 6th International CAN Conference, November 1999.
    [41] 郭純甫,“The Mechanism Design of Natural Stride Exercise Machine”碩士論文,逢甲大學,民國九十五年。
    [42] 俞舒文,“Walking Pattern Analysis and Control of Humanoid Robot”碩士論文,台灣大學,民國九十五年。
    [43] 林哲平,“Fuzzy-Logic Zero-Moment-Point Generator and IC Design of Biped Robot”第十四屆全國自動化科技研討會,2006。
    [44] 柳高陵,“Stairs Climbing of a Small-size Humanoid Robot by Using Machine Vision”碩士論文,臺灣科技大學,民國九十五年。
    [45] 嚴中廷,“Walking Pattern Planning and Control of a Small-size Humanoid Robot”碩士論文,臺灣科技大學,民國九十五年。
    [46] 廖建龍,“以CAN Bus為基礎的分散式即時伺服馬達控制器之設計與實作”,交通大學,碩士論文,民國八十八年。
    [47] 謝鎮洲,“以CAN Bus建構出高速精密之多軸運動控制器”,交通大學,碩士論文,民國九十年。

    QR CODE