簡易檢索 / 詳目顯示

研究生: 温仕寶
Shih-Pao Wen
論文名稱: 鍋爐用鋼於混燒生質炭/煤氣氛之高溫腐蝕
High-temperature Corrosion of Boiler Steel under Co-firing of Biomass / Coal atmosphere
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 雷添壽
Tien-Shou Lei
劉宏義
Horng-Yih Liou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 110
中文關鍵詞: 生質炭飛灰氣氛硫化
外文關鍵詞: biomass, fly ash, atmosphere, sulfurization
相關次數: 點閱:185下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用SA209-T1、SA213-T22、SA213-T91鍋爐用鋼於600○C進行8、32、48小時之高溫空氣氧化、單純燃燒生質炭、單純然燒煤粉,以及混燒不同比例生質炭/煤的高溫腐蝕試驗。在8小時的間隔下持續補充燃料,模擬高溫鍋爐的煙道區域,針對燃料飛灰、氣氛的高溫腐蝕行為進行研究。藉由金屬損失量測、OM觀察、SEM、XRD、EPMA定性定量分析顯微結構形貌變化及腐蝕趨勢,比較三種鋼料的差異,以探討燃料的種類、鋼料成分對腐蝕行為的影響。
    實驗結果顯示,鋼料在兩種燃料之氣氛下皆受燃料內硫成分影響發生硫化。鋼料在單純煤粉氣氛下均受到較嚴重的硫化,且在皮膜/基材界面處形成硫化物,硫化物的生成導致形成的皮膜在冷卻過程嚴重剝落,使鋼料缺乏保護性。在氣氛和飛灰的狀態時,腐蝕物質鉀元素的危害較低,硫、氯則以氣氛化合物的形式釋放,在初始階段附著在鋼料表面和以氣氛化合物的形式滲透入皮膜。隨著生質炭的比例增加,三種鋼料的金屬損失量逐漸減少。不含Cr元素之T1無論在任何情況下,皆有較大之金屬損失量。


    The purpose of this study is to simulate the boiler for high temperature application to study the high temperature corrosion problems of boiler steel by fuel fly ash. SA209-T1, SA213-T22 and SA213-T91 were used as the experimental material in this study. We observe boiler steel after 8, 32, 48 hours in different fuel atmosphere at 600℃. Simulate environment include 100% coal, 20% biomass, 100% biomass and pure air condition. We continue to supply fuel per 8 hours. The results were analyzed by metal loss, OM observation, SEM/EDX and X-ray diffraction, EPMA analyze.
    The results showed that boiler steel were sulfurized in fuel atmosphere. the most serious situation be happen in coal condition. Sulfur be found that existence in substrate / scale interface, exfoliation situation of scale be found here during cooling. Potassium is not major factor when fuel atmosphere corrosion condition, the most important element is chlorine and sulfur, the two element be released by gaseous compound. Fly ash contact boiler steel before oxide scale grow up, after scale grow up, gaseous compound pass through oxide scale to contact with steel. The metal loss decrease when biomass ratio reduce. Whatever any situation, T1 boiler steel always have maximum metal loss.

    第一章 前言 第二章 文獻回顧 2.1 生質燃料 2.1.1生質燃料腐蝕性 2.1.2 生質燃料和煤粉比較 2.1.3 燃料灰燼腐蝕行為和爐管影響區 2.2 金屬的高溫氧化和保護機制 2.2.1 金屬的高溫氧化 2.2.2 氧化皮膜的完整性 2.2.3 氧化物附著之機制 2.2.4 硫化物氣氛之影響 2.3 合金元素添加之保護機制 2.4 灰燼和氣氛的高溫腐蝕 2.4.1 氯氣氛之高溫腐蝕 2.4.2 硫氣氛之高溫腐蝕 2.4.3 灰燼之腐蝕機制 第三章 實驗步驟 3.1 實驗流程 3.2 試片製備 3.3 高溫腐蝕試驗 3.3.1 試驗方法 3.3.2 空氣高溫氧化試驗 3.4 分析方法 3.4.1 灰燼分析 3.4.2 金屬損失量測 3.4.3 試片表面XRD分析(XRD, X-ray diffraction) 3.4.4 截面金相觀察 3.4.5 SEM定性定量分析 3.5 飛灰沉積測試 3.6 分析設備 第四章 實驗結果 4.1 灰燼成分分析 4.1.1 飛灰沉積試驗 4.1.2 燃料底灰分析 4.2 燃料添加頻率的作用 4.2.1 不同頻率之氣氛濃度 4.2.2 氣氛的滲透性 4.3 T1於燃料燃燒氣氛之高溫腐蝕 4.3.1 T1高溫空氣氧化 4.3.2 T1於燃料氣氛之腐蝕 4.3.3 T1於燃料燃燒氣氛之硫化 4.4 T22於燃料燃燒氣氛之高溫腐蝕 4.4.1 T22高溫空氣氧化 4.4.2 T22於燃料氣氛之腐蝕 4.5 T91於燃料燃燒氣氛之高溫腐蝕 4.5.1 T91高溫空氣氧化 4.5.2 T91於燃料氣氛之腐蝕 第五章 討論 5.1高溫氧化 5.2燃料燃燒氣氛之高溫腐蝕 5.2.1燃料燃燒氣氛中硫的作用 5.2.2燃料燃燒氣氛中氯的作用 5.3燃料種類的作用 5.4 鉻之作用 第六章 結論 參考文獻 附錄

    [1] R. Saidur, E. A. Abdelaziz, A. Demirbas, M. S. Hossain, and S. Mekhilef, "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, vol. 15, pp. 2262-2289, 2011.
    [2] 陳昱廷、王朝正,鍋爐用鋼於混燒生質炭/煤之高溫腐蝕,國立台灣科技大學機械工程系碩士學位論文,民國101年7月30日。
    [3] G. Lazaroiu and I. Pisa, "Influence of co-combustion of coal / biomass on the corrosion," Fuel Processing Technology, vol. 104, pp. 356-364, 2012.
    [4] M. Montgomery and O. H. Larsen, "Field test corrosion experiments in denmark with biomass fuels part 2: Co-firing of straw and coal," Materials and Corrosion, vol. 53, pp. 185-194, 2002.
    [5] D. L. Singbeil, J. R. Kish, C. Reid, and R. Seguin, "Corrosion of high alloy superheater tubes in a coastal biomass power boiler," Nace - Int. Corros. Conf. Ser, pp. 15, 2007.
    [6] M. Sami, K. Annamalai, and M. Wooldridge, "Co-firing of coal and biomass fuel blends," Progress in Energy and Combustion Science, vol. 27, pp. 171-214, 2001.
    [7] H. Veringa, A. Maciejewska, J. Sanders, and S. D. Peteves, "Co-firing of biomass with coal: Constratints and role of biomass pre-treatment," Institute for Energy, pp. 100, 2006.
    [8] N. J. Simms, A. U. Syed, and J. E. Oakey, "Fireside corrosion of superheaters: Effects of air and oxy-firing of coal and biomass," Fuel, vol. 101, pp.62-73, 2012.
    [9] L. L. Baxter, B. M. Jenkins, T. R. Miles, and T. R. Miles, "Combustion properties of biomass," Fuel Processing Technology, vol. 54, pp. 17-46, 1998.
    [10] Y. Y. Gang Lu, S. Cornwell, M. Whitehouse, and G. Riley, "Impact of co-firing coal and biomass on flame characteristics and stability," Fuel, vol. 87, pp. 1133-1140, 2008.
    [11] S. Sokhansanj, J. Dai, J. R. Grace, X. Bi, C. Jim Lim, and S. Melin, "Overview and some issues related to co-firing biomass and coal," The canadlan journal of chemical engineering, vol. 86, pp. 367-386, june 2008.
    [12] I. Obernberger and F. Biedermann, "Ash related problems during biomass combustion and possibilities for a sustainable ash utilisation," Proceedings of the International Conference “Wrec”, May, Scotland, Elsevier Ltd., Oxford, UK, 2005.
    [13] H. Kassman, M. Brostrom, M. Berg, and L. E. Amand, "Measures to reduce chlorine in deposits application in a large-scale circulating fluidised bed boiler firing biomass," Fuel, vol. 90, pp. 1325-1334, 2011.
    [14] F. I. Wei and Y. N. Chang, "Review high temperature oxidation of low alloy steels," Journal of Materials Science, vol. 24, pp. 14-22, 1989.
    [15] J. Galvele, "Basic corrosion and oxidation" by John M., published by Ellis Horwood Ltd, 2nd edn, 1986.
    [16] J. K. Tien and F. S. Pettit, "Mechanism of oxide adherence on Fe-25Cr-4Al ( Y or Sc ) alloys," Metallurgical Transactions, vol. 3, June 1972.
    [17] F. Lang, Z. Yu, S. Gedevanishvili, S. C. Deevi, S. Hayashi, and T. Narita, "Corrosion behavior of Fe-40Al sheet in N2-11.2O2-7.5CO2 atmospheres with various SO2 contents at 1273 K," Intermetallics, vol. 11, pp. 135-141, 2003.
    [18] G. H. Meier, F. S. Pettit, and N. Birks, "Introduction to high temperature oxidation of metals," Edward Arnold Ltd, pp. 338, 2006.
    [19] B. Chattopadhyay and G. C. Wood, "The transient oxidation of alloys," Oxid. Met, vol. 2, pp. 373, 1970.
    [20] A. P. Greeff, C. W. Louw, and H. C. Swart, "The oxidation of industrial FeCrMo steel," Corrosion Science, vol. 42, pp. 1725-1740, 2000.
    [21] Y. Jiamin and W. Zhansong, "Corrosion behavior of TP316L of superheater in biomass boiler with simulated atmosphere and deposit," Chinese Journal of Chemical Engineering, vol. 17, pp. 849-853, 2009.
    [22] B. Q. Wang, "Erosion-corrosion of coatings by biomass-fired boiler fly ash," Wear, vol. 188, pp. 40-48, 1995.
    [23] D. Kamar, "Fly ash - coal combustion residue," Mineral Perindustrian, pp 1-4, 2009.
    [24] X. Zhao, X. Wang, and L. Ma, "Deposition and corrosion problems of biomass fired boiler," Third International Conference on Measuring Technology and Mechatronics Automation, pp. 852-854, 2011.
    [25] L. L. Baxter, "Ash deposition during biomass and coal combustion : A mechanistic approach," Biomass and Bioenergy, vol. 4, pp. 85-102, 1993.
    [26] M. S. Li, Z. J. Lin, J. Y. Wang, and Y. C. Zhou, "High-temperature oxidation and hot corrosion of Cr2AlC," Acta Materialia, vol. 55, pp. 6182-6191, 2007.
    [27] Y. S. Li, M. Spiegel, and S. Shimada, "Effect of Al/Si addition on KCl induced corrosion of 9% Cr steel," Materials Letters, vol. 58, pp. 3787-3791, 2004.
    [28] E. F. Martti, "Importance of coal ash composition in protecting the boiler against chlorine deposition during combustion of chlorine-rich biomass," Fuel, vol. 84, pp. 201-212, 2005.
    [29] H. T. Ma, C. H. Zhou, and L. Wang, "High temperature corrosion of pure Fe, Cr and Fe–Cr binary alloys in O2 containing trace KCl vapour at 750°C," Corrosion Science, vol. 51, pp. 1861-1867, 2009.
    [30] J. Lehmusto, D. Lindberg, P. Yrjas, B. J. Skrifvars, and M. Hupa, "Studies on the partial reactions between potassium chloride and metallic chromium concerning corrosion at elevated temperatures," Springer Science+Business Media, LLC, pp. 129-148, 2011.
    [31] H. P. Nielsen, F. J. Frandsen, K. Dam-Johansen, and L. L. Baxter, "The implications of chlorine-associated corrosion on the operation of biomass-fired boilers," Progress in Energy and Combustion Science, vol. 26, pp. 283-298, 2000.
    [32] J. Stringer, "Hot corrosion of high temperature alloys," Ann. Rev. Mate. Science, vol. 7, pp. 477-509, 1977.
    [33] A. Hernas, M. Imosa, B. Formanek, and J. Cizner, "High-temperature chlorine–sulfur corrosion of heat-resisting steels," Journal of Materials Processing Technology, vol. 157, pp. 348-353, 2004.
    [34] R. Kallstrom, "Corrosion during gasification of biomass and waste," Journal De Physique Iv, vol. 3, pp. 752-761, 1993.
    [35] P. Henderson, R. Pettersson, C. Andersson, and J. Hogberg, "Reducing superheater corrosion in wood-fired boilers," Materials and Corrosion, vol. 57, pp. 128-134, 2006.
    [36] F. J. Frandsen, P. A. Jensen, J. Hansen, K. Dam-Johansen, N. Henriksen, and S. Horlyck, "SEM Investigation of superheater deposits from biomass-fired boilers," Energy & Fuels 2004, vol. 18, pp. 378-384.
    [37] H. Nurmesniemi, O. Dahl, R. Poykio, and G. Watkins, "Comparison of thecharacteristics of bottom ash and fly ash from a medium-size (32 MW) municipal district heating plant incinerating forest residues and peat in a fluidized-bed boiler," Fuel Processing Technology, vol. 90, pp. 871-878, 2009.
    [38] C. J. Wang and T. T. He, "Morphological development of subscale formation in Fe–Cr–Ni alloys with chloride and sulfates coating," Oxidation of Metals, vol. 58, pp. 415-437, October 2002.

    QR CODE