簡易檢索 / 詳目顯示

研究生: 楊士逸
SHIH-YI YANG
論文名稱: 基於影像辨識的室內定位系統設計與實作
Design and implementation of an image recognition based indoor positioning system
指導教授: 呂政修
Jenq-Shiou Leu
口試委員: 周承復
Cheng-Fu Chou
錢膺仁
Ying-Ren Chien
黃琴雅
Chin-Ya Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 41
中文關鍵詞: 室內定位系統合理定位過濾智慧型裝置定位系統深度學習卷積神經網路
外文關鍵詞: Indoor Positioning System, Reasonable Positioning Filter, Smart Device-based Indoor Positioning System, Deep Learning, Convolutional Neural Network
相關次數: 點閱:399下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著智慧型手機的普及,全球定位系統 (Global Positioning System, GPS) 廣泛地被應用於室外定位 (Outdoor Positioning),許多與生活息息相關的服務也都依靠GPS,例如近期為了防止新冠肺炎 (Coronavirus, COVID-19) 疫情擴張,政府必須掌握自我隔離者、已知感染者與其密集接觸者的行蹤,依照定位資料及時間,使得政府能夠發送資訊提醒與感染者在同一時間與地點活動的人民注意自己的身體狀況,以提升防疫效果。
    不過受到建築遮蔽所造成訊號衰減等因素,GPS在室內定位的準確度與室外相差甚遠。即使GPS在室內的訊號不佳,但對於室內定位的需求並無減少,故近年來在室內環境中實現高精確度之定位系統成為了熱門的研究議題。
    本研究使用手持裝置 (例如:平板電腦) 來模擬未來發展至成熟且普及的穿戴式裝置 (例如:智慧眼鏡) ,在不額外架設Wi-Fi分享器或iBeacon等硬體設備,純粹依靠手持裝置上的鏡頭擷取影像,利用卷積神經網路 (Convolutional Neural Network, CNN),來實現室內定位系統。本篇論文所提出之系統於實際場域進行試驗,並以不同路徑、角度、天氣、時間實測,以驗證本文提出的方法。同時,透過我們提出來的合理定位過濾 (Reasonable Positioning Filter, RPF) 程序改良後,平均定位精準度可達到94.181%。


    As smart phone has become more popular, Global Positioning System (GPS) has been widely used in outdoor positioning. Many services in our life are related to the position. For example, to prevent the expansion of coronavirus (COVID-19) outbreak, recently, the government tries to track self-isolators or infected people and then notice those people who are active at the same times and places for raising the efficiency of epidemic prevention.
    However, the performance of indoor positioning based on GPS is not good enough because the signal is declined by the buildings and the obstacles. The need of indoor positioning is still desired even if GPS performance is worse in an indoor environment. Hence, developing a precise Indoor Positioning System (IPS) becomes a hot topic in recent years.
    In this study, we use handheld devices (e.g. tablet) to mimic future wearable devices (e.g. smart glasses). Without relying on any additional hardware (e.g. Wi-Fi access point or iBeacon), we employ handheld devices with a camera to fetch real-time images and recognize them with the assistance of Convolutional Neural Network (CNN) to carry out an indoor positioning system (IPS). To validate the concept, we conducted several experiments in real indoor environments and the experimental scenarios include walking on different paths with a variety of speeds in different weathers at different times. Meanwhile, the proposed Reasonable Positioning Filter (RPF) can make the average accuracy of indoor positioning achieve 94.181%.

    論文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖片索引 VI 表格索引 VIII 第1章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 章節提要 4 第2章 研究背景 5 2.1 定位相關技術 5 2.1.1 全球定位系統 6 2.1.2 無線射頻辨識定位 7 2.1.3 無線熱點定位技術 8 2.1.4 藍牙定位技術 9 2.1.5 行人推算導航演算法 10 2.1.6 影像辨識室內定位技術 10 2.2 神經網路 12 2.2.1 卷積神經網路 12 2.2.2 深度殘差網路 13 2.2.3 GoogLeNet 14 第3章 室內定位系統的設計與實現 20 3.1 設計步驟 20 3.2 系統架構 21 3.3 建構室內定位點及方向資料集 22 3.3.1 參考點影片收集 22 3.3.2 影片資料處理與分類 22 3.4 視覺化模擬程式設計 23 3.5 合理定位過濾 24 第4章 實驗測試與結果 25 4.1 硬體設備介紹 25 4.1.1 平板電腦 25 4.1.2 智慧型手機 26 4.1.3 桌上型電腦 26 4.1.4 筆記型電腦 26 4.2 軟體工具介紹 27 4.2.1 視覺化模擬程式開發環境 27 4.2.2 定位模型訓練與系統整合開發環境 28 4.3 實驗測試環境介紹 29 4.3.1 地圖資訊 29 4.3.2 實驗場域 30 4.4 實驗結果 31 4.4.1 不同神經網路模型對於辨識精確度的影響 32 4.4.2 合理定位過濾方法對於結果呈現的影響 33 第5章 結論 38 參考文獻 39

    [1] L. Yuan-Cheng, H. Frannie, Y. Yi-Hsuan, L. Ching-Neng, and S. Yu-Chin, "A GPS navigation system with QR code decoding and friend positioning in smart phones," in 2010 2nd International Conference on Education Technology and Computer, 2010, vol. 5, pp. V5-66-V5-70.
    [2] X. Bao, H. Bie, and M. Wang, "Integration of multimedia and location-based services on mobile phone tour guide system," in 2009 IEEE International Conference on Network Infrastructure and Digital Content, 2009, pp. 642-646.
    [3] C. Yang, P. Tsai, M. Liao, C. Huang, and C. E. Yeh, "Location-Based Mobile Multimedia Push System," in 2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, 2010, pp. 181-184.
    [4] C. C. Ho and R. Lee, "Real-Time Indoor Positioning System Based on RFID Heron-Bilateration Location Estimation and IMU Inertial-Navigation Location Estimation," in 2015 IEEE 39th Annual Computer Software and Applications Conference, 2015, vol. 3, pp. 481-486.
    [5] P. Bahl and V. N. Padmanabhan, "RADAR: an in-building RF-based user location and tracking system," in Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064), 2000, vol. 2, pp. 775-784 vol.2.
    [6] J. Leu and H. Tzeng, "Received Signal Strength Fingerprint and Footprint Assisted Indoor Positioning Based on Ambient Wi-Fi Signals," in 2012 IEEE 75th Vehicular Technology Conference (VTC Spring), 2012, pp. 1-5.
    [7] C. Yang and H. Shao, "WiFi-based indoor positioning," IEEE Communications Magazine, vol. 53, no. 3, pp. 150-157, 2015.
    [8] T. Shuo, M. Lin, and X. Yubin, "A compression and reconstruction algorithm of indoor WLAN positioning Radiomap data based on neural network," in 11th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM 2015), 2015, pp. 1-6.
    [9] G. Anastasi, R. Bandelloni, M. Conti, F. Delmastro, E. Gregori, and G. Mainetto, "Experimenting an indoor bluetooth-based positioning service," in 23rd International Conference on Distributed Computing Systems Workshops, 2003. Proceedings., 2003, pp. 480-483.
    [10] Z. Jianyong, L. Haiyong, C. Zili, and L. Zhaohui, "RSSI based Bluetooth low energy indoor positioning," in 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2014, pp. 526-533.
    [11] W. Kang and Y. Han, "SmartPDR: Smartphone-Based Pedestrian Dead Reckoning for Indoor Localization," IEEE Sensors Journal, vol. 15, no. 5, pp. 2906-2916, 2015.
    [12] J. Kim and H. Jun, "Vision-based location positioning using augmented reality for indoor navigation," IEEE Transactions on Consumer Electronics, vol. 54, no. 3, pp. 954-962, 2008.
    [13] Z. Liu, Y. Xu, Z. Liu, and J. Wu, "A large scale 3D positioning method based on a network of rotating laser automatic theodolites," in The 2010 IEEE International Conference on Information and Automation, 2010, pp. 513-518.
    [14] C. Lim, S. Kang, H. Cho, S. Park, and J. Park, "An Enhanced Indoor Localization Algorithm Based on IEEE 802.11 WLAN Using RSSI and Multiple Parameters," in 2010 Fifth International Conference on Systems and Networks Communications, 2010, pp. 238-242.
    [15] E. C. L. Chan, G. Baciu, and S. C. Mak, "Using the Newton Trust-Region Method to Localize in WLAN Environment," in 2009 IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, 2009, pp. 363-369.
    [16] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, "Recent advances in augmented reality," IEEE Computer Graphics and Applications, vol. 21, no. 6, pp. 34-47, 2001.
    [17] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
    [18] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," arXiv e-prints, p. arXiv:1512.03385
    [19] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," arXiv e-prints, p. arXiv:1409.1556
    [20] C. Szegedy et al., "Going Deeper with Convolutions," arXiv e-prints, p. arXiv:1409.4842
    [21] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, "Rethinking the Inception Architecture for Computer Vision," arXiv e-prints, p. arXiv:1512.00567
    [22] S. Ioffe and C. Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift," arXiv e-prints, p. arXiv:1502.03167
    [23] S. Ruder, "An overview of gradient descent optimization algorithms," arXiv e-prints, p. arXiv:1609.04747
    [24] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, "Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning," arXiv e-prints, p. arXiv:1602.07261

    QR CODE