簡易檢索 / 詳目顯示

研究生: 葉俐君
LI-CHUN YEH
論文名稱: 鈀結構式氧還原觸媒及其單電池表現
Pd structural catalyst for oxygen reduction reaction and its single cell performance
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 黃鶯聲
Ying-Sheng Huang
郭東昊
Dong-Hau Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 131
中文關鍵詞: 鈀觸媒氧還原反應(110)優選晶面電化學觸媒質子交換膜燃料電池單電池
外文關鍵詞: Palladium catalyst, Oxygen reduction reaction, (110) preferential oriented facet, Electrochemical catalyst, PEMFC, single cell
相關次數: 點閱:229下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本期的研究中,以合成碳纖維支撐的優選晶面鈀觸媒並研究其催化氧氣的還原反應(ORR)。先前研究當中,所提出電鍍沈積鈀奈米結晶於碳紙的氣體擴散層的碳纖維表面,並將有鈀的碳紙製成氫氧燃料電池的膜電極組測試其性能。
    為了進一步探討電鍍成長鈀優選晶面,我們使用九個電鍍液配方,並分析鈀優選晶面形貌及其在半電池的ORR活性。在這些配方中,配方C溶液0.1 mM PdCl2& 1.0 mM HCl& 0.1 M NaClO4,為擁有合成最佳活性的ORR觸媒,而優選成長主要歸因於有足夠的ClO4-陰離子和氯化鈀完全的溶解在電鍍溶液中。藉由X光繞射晶相(XRD)和穿透式電子顯微鏡(TEM)分析電沈積的鈀粒子,結果顯示優選成長Pd (110)會形成一個三角形的塔且具有尖端的形貌,(111)和(100)晶面也在結構中;利用配方C可製備出高比例Pd(110)晶面,使用旋轉電極以伏安法測試其有高的ORR活性,並利用旋轉環盤電極以伏安法測試其含有較少的雙氧水產率;經由XRD分析此(110)晶面比例估計佔有15%,而雙氧水的產率在0.6 V (vs. RHE)電位下少於5%。
    以碳纖維支撐具優選Pd (110)晶面的ORR觸媒作為燃料電池的陰極,提供了較便宜且較佳的活性;當和Nafion®NRE- 212膜組裝成膜電極組的氫氧燃料電池時,還額外增加PTFE和碳混和的疏水層處理,此層對於水管理是必須的,且與電池功率的關係相當重要。當疏水層厚度大約200 m和鈀觸媒負載量2.38 mg cm-2,所量測得最大功率332 mW cm-2,對比於疏水層厚度約100 m在相同白金負載量下,其量測得最大功率264 mW cm-2。
    關鍵字:鈀觸媒、氧還原反應、(110)優選晶面、電化學觸媒、質子交換膜燃料電池、單電池


    ABSTRACT
    In this work, we synthesize the carbon fiber supported Pd catalysts of preferential crystal plane and investigate their performance in catalyzing oxygen reduction reaction (ORR). The recipe, used in the earlier study, has been extended to electrodeposit Pd nanocrystals on carbon fibers of the carbon paper for gas diffusion. The Pd-loaded carbon paper is subsequently integrated into the membrane-electrode assembly of a H2-O2 fuel cell and tested its performance.
    To explore the preferential growth of Pd in electrodeposition, nine representative recipes of the Pd electroplating solution are used and analyzed in terms of the Pd morphology, preferential plane, and the ORR activity in a half cell. Among them, the recipe C is identified to be the best for synthesizing the most active ORR catalyst, that is, an aqueous solution of 0.1 mM PdCl2, 1.0mM HCl, and 0.1M NaClO4. The preferential growth is mainly attributed to the ClO4- anion of adequate concentration, and total dissolution of PdCl2 in the electroplating solution. X-ray diffraction (XRD) and transmission electron microscopy (TEM) of the electrodeposited Pd particles indicate the preferential growth of Pd (110) results in a pointed tip of triangular pyramid, while the crystal planes of (111) and (100) also grow. The higher fraction of Pd(110) of the sample prepared with recipe C appears to be in line with the higher ORR activity measured with rotating disk electrode voltammetry, and less hydrogen peroxide yield measured using rotating ring-disk electrode voltammetry. The (110) fraction of this sample is estimated to be 15% using XRD, and H2O2 yield is evaluated less than 5% at 0.6 V (vs. RHE).
    The carbon fiber supported ORR catalyst of preferential Pd (110) plane offers a cost-effective activity for the fuel cell cathode. When assembled into the Nafion®NRE-212 membrane electrode assembly of a H2-O2 cell, an extra hydrophobic layer of PTFE and carbon mixture is found necessary for water management, and equally important for the power of fuel cell. Quantitatively, the peak power measured is 332 mW cm-2 as the thickness of the hydrophobic layer is around 200 m with a Pd loading of 2.38 mg cm-2. In contrast, the peak power measured 264 mW cm-2 with the same Pt loading, when the hydrophobic layer thickness is approximately 100 m.
    Keywords: Palladium catalyst;Oxygen reduction reaction;
    (110) preferential oriented facet;Electrochemical catalyst;PEMFC;single cell

    目錄 摘要 I ABSTRACT III 目錄 V 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1.1前言 1 1.2燃料電池種類 5 1.2.1鹼性燃料電池 5 1.2.2質子交換膜燃料電池 6 1.2.3直接甲醇燃料電池 8 1.2.4磷酸電解質燃料電池 9 1.2.5熔融碳酸鹽電解質燃料電池 10 1.2.6固態氧化物電解質燃料電池 11 1.3研究動機 12 第二章 論文基礎與文獻回顧 13 2.1 質子交換膜燃料電池之工作原理 13 2.2 質子交換膜燃料電池構造之簡介 14 2.3 電極 18 2.3.1 陽極觸媒 19 2.3.2 陰極觸媒 19 2.3.2.1 陰極氧還原反應 24 2.4 膜電極組內之反應機制 27 2.5 MEA的製作方式 29 第三章 實驗方法與分析儀器 37 3.1 實驗藥品 37 3.2 儀器設備 40 3.3 實驗方法 41 3.3.1 碳纖維紙支撐鈀觸媒製備 41 3.3.2 質子交換膜燃料電池之膜電極製備 43 3.3.3 膜電極組壓合及組裝步驟 44 3.3.2.1 電池放電測試及交流阻抗測試 49 3.4 材料性質分析 50 3.4.1 X光能量散佈儀元素組成分析 50 3.4.2 電化學特性測試 50 3.4.3 電化學交流阻抗分析基本原理 55 第四章 實驗結果與討論 56 4.1 場發射掃描式電子顯微鏡分析 56 4.2 X光繞射晶相分析 60 4.3 場發射式穿透式電子顯微鏡分析 60 4.4 電化學特性分析 60 4.4.1鈀觸媒優選晶面分析 60 4.4.2 觸媒雙氧水產率測試 60 4.5電池效能分析 60 4.5.1 使用碳紙纖維支撐鈀觸媒之單電池效能 60 4.5.2 交流阻抗分析 60 第五章 結論 60 參考文獻 60 附 錄 60 圖目錄 圖1-1 鹼性燃料電池裝置架構圖[3] 5 圖1-2 質子交換膜燃料電池裝置架構圖(左);陰極觸媒反應圖(右)[5] 7 圖1-3 直接甲醇燃料電池裝置架構圖[6] 8 圖1-4 熔融碳酸鹽電解質燃料電池[8] 10 圖1-5 固態氧化物電解質燃料電池運作示意圖[10] 11 圖2-1 質子交換膜燃料電池之運作原理[11] 14 圖2-2 交換膜與電極組裝製圖(陰極/電解質/陽極)[10] 15 圖2-3 全氟酸分子結構[12] 17 圖2-4 顯示Nafion®膜中長鏈分子含有水合其周圍的磺化側鏈[10] 17 圖2-5 FCC結構鈀在(111)、(110)和(100)晶面的原子排列示意圖 20 圖2-6 (A)適中還原速度下產生的奈米棒示意圖;(B)快速還原速度下產生的奈米柱示意圖[20] 21 圖2-7 DFT計算所得Pd(100)、Pd(111)、Pd(110)對Cl和O吸附能長方塊圖[23] 22 圖2-8 (a)五個晶面圍成的奈米柱示意圖;(b)、(c)頂端由{111}延伸{hkk}、{hk0}的奈米柱示意圖(h>k>0) [24] 22 圖2-9 不同電位下電鍍的SEM圖a. 0.3 V b. 0.6 V c. 0.9 V [25] 23 圖2-10 氧氣吸附於觸媒表面的不同模式(M:金屬)[27] 25 圖2-11 在酸環境下不同氧還原反應途徑[27] 26 圖2-12 燃料電池極化曲線圖[11] 28 圖2-13 電極側面示意圖(a)沒有觸媒支撐層(b)有觸媒支撐層[28] 30 圖2-14 不同負載量觸媒支撐層其電流-電位曲線[28] 32 圖2-15 以含浸法製備觸媒PtRu於質子交換膜表面[43] 35 圖3-1 電鍍鈀奈米晶體三極式電化學反應槽 42 圖3-2 熱壓前膜電極組 44 圖3-3 MEA組成示意圖 45 圖3-4 電池組組裝之質子交換模燃料電池示意圖[45] 46 圖3-5 平行流場板示意圖 47 圖3-6 電池組組裝之拆解圖 47 圖3-7 電池測試完整組裝圖 48 圖3-8 ORR測試三極式電化學反應槽 54 圖3-9 H2O2測試四極式電化學反應槽 54 圖3-10 阻抗函數於複數平面圖示 55 圖4-1 配方A 電鍍液,固定(a)-0.20V (b)-0.30V (vs. Ag/AgCl)下電鍍500秒的碳紙支撐鈀觸媒 57 圖4-2 配方B電鍍液,固定(a)-0.20V (b)-0.30V (vs. Ag/AgCl)下電鍍500秒的碳紙支撐鈀觸媒 58 圖4-3 配方C 電鍍液,固定-0.30V (vs. Ag/AgCl)下電鍍500秒的碳紙支撐的鈀觸媒 58 圖4-4 配方C電鍍液,固定(a)-0.22V (b)-0.40V (vs. Ag/AgCl)下電鍍500秒的碳紙支撐鈀觸媒 59 圖4-5 配方D電鍍液,固定(a)-0.30V (b)-0.40V (vs. Ag/AgCl)下電鍍500秒的碳紙支撐鈀觸媒 60 圖4-6 配方E電鍍液,固定(a)-0.30V (b)-0.34V (vs. Ag/AgCl)下電鍍500秒的碳紙支撐鈀觸媒 60 圖4-7 配方F電鍍液,固定-0.34V (vs. Ag/AgCl)下電鍍500秒的碳紙支撐鈀觸媒 60 圖4-8 配方F電鍍液,固定(a)-0.22V (b)-0.30V (vs. Ag/AgCl)下電鍍500秒的碳紙支撐鈀觸媒 60 圖4-9 配方G電鍍液,固定(a)-0.30V (b)-0.40V (vs. Ag/AgCl)下電鍍500秒的碳紙支撐鈀觸媒 60 乙二醇多用於多醇法,同時當作溶劑和還原劑以還原金屬離子,而乙二醇是一個很有能力還原金屬鹽(貴金屬)的還原劑,根據文獻[20]其使用不同的乙二醇濃度來改變還原速率,合成出不同形貌的鈀晶體結構。 60 圖4-10 配方H電鍍液,固定(a)-0.20V (b)-0.30V (vs. Ag/AgCl)下電鍍500秒的碳紙支撐鈀觸媒 60 圖4-11 配方I電鍍液,固定(a)-0.26V (b)-0.30V (c)34V (vs. Ag/AgCl)下電鍍500秒的碳紙支撐鈀觸媒 60 圖4-12 不同電鍍液組成電鍍鈀觸媒的XRD 60 圖4-13 在配方A電鍍液,固定-0.30V (vs. Ag/AgCl)下電鍍500秒鈀觸媒高解析TEM圖 60 圖4-14 在配方B電鍍液,固定-0.30V (vs. Ag/AgCl)下電鍍500秒鈀觸媒(a)Nano-beam electron diffraction pattern;(b)CarIn模擬鈀區軸為[ ]繞射圖 60 圖4-15 鈀晶體以( )為twin plane向旁形成多種可能晶面示意圖 60 圖4-16 在配方A電鍍液,固定-0.30V (vs. Ag/AgCl)下電鍍500秒鈀觸媒高解析TEM圖 60 圖4-17 在配方A電鍍液,固定-0.30V (vs. Ag/AgCl)下電鍍500秒鈀觸媒(a)Nano-beam electron diffraction pattern;(b)CarIn模擬鈀區軸為[ ]繞射圖 60 圖4-18 配方A不同電位下電鍍的CV圖,掃描速率50mV s-1, 60 0.7~0.9V (vs. RHE)局部放大圖 60 圖4-19 配方B不同電位下電鍍的CV圖,掃描速率50mV s-1, 60 0.7~0.9V (vs. RHE)局部放大圖 60 圖4-20 配方C不同電位下電鍍的CV圖,掃描速率50mV s-1電位範圍0~1.4V (vs. RHE) 60 圖4-21配方D不同電位下電鍍的CV圖,掃描速率50mV s-1(a)電位範圍0~1.4V (vs. RHE);(b)0.7~0.9局部放大圖 60 圖4-22 配方E不同電位下電鍍的CV圖,掃描速率50mV s-1電位範圍0~1.4V (vs. RHE) 60 圖4-23 配方F不同電位下電鍍的CV圖,掃描速率50mV s-1電位範圍0~1.4V (vs. RHE) 60 圖4-24 配方G不同電位下電鍍的CV圖,掃描速率50mV s-1電位範圍0~1.4V (vs. RHE) 60 圖4-25 配方H不同電位下電鍍的CV圖,掃描速率50mV s-1電位範圍0~1.4V (vs. RHE) 60 圖4-26 配方I不同電位下電鍍的CV圖,掃描速率50mV s-1電位範圍0~1.4V (vs. RHE) 60 圖4-27 不同電位下電鍍鈀的LSV圖 (a)配方A (b)配方B 60 圖4-28 不同電位下電鍍鈀的LSV圖 (a)配方C (b)配方D 60 圖4-29 不同電位下電鍍鈀的LSV圖(a)配方E (b)配方F 60 圖4-30 不同電位下電鍍鈀的LSV圖,配方G、配方H、配方I 60 圖4-31 不同配方下電鍍鈀的LSV圖 60 圖4-32 不同配方下電鍍鈀的H2O2產率,電位範圍0.9~0V(vs.RHE) 60 圖4-33 不同配方下電鍍鈀的H2O2產率,電位範圍0.9~0.6V (vs. RHE) 60 圖4-34 熱壓完MEA 疏水層剝離圖 60 圖4-35熱壓完MEA 疏水層完整圖 60 圖4-36 單電池測試後的側試圖(a)MEA (b)陰極側水層【薄】 60 圖4-37 單電池測試後的側試圖(a)MEA (b)陰極側水層【厚】 60 圖4-38 在不同溫度下的j-V及j-P曲線【疏水層較薄】 60 圖4-39 在不同溫度下的j-V及j-P曲線【疏水層較厚】 60 圖4-40 質子交換膜燃料電池等效電路模型[49] 60 圖4-41 單電池之交流阻抗【疏水層較薄】 60 圖4-42 單電池之交流阻抗【疏水層較厚】 60 表目錄 表1-1 各種燃料電池之特性[1] 4 表3-1 鈀奈米晶體電鍍液組成 42 表3-2 電鍍使用條件 42 表4-1 不同電鍍液組成電鍍鈀觸媒在XRD繞射峰的積分強度比 60 表4-2 不同配方/電鍍電位下電鍍鈀觸媒活性表 60

    1. 鄭耀宗,徐耀昇, 燃料電池技術進展的現況. 燃料電池論文集, 1999: p. 15-27.
    2. 林伸茂, 新能源時代のDMFC : 直接甲醇燃料電池原理.應用與實作. 旗威科技有限公司, 2006.
    3. De Geeter, E., et al., Alkaline fuel cells for road traction. Journal of Power Sources, 1999. 80(1-2): p. 207-212.
    4. Papageorgopoulos, D.C., M. Keijzer, and F.A. de Bruijn, The inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported electrocatalysts in the quest for improved CO tolerant PEMFC anodes. Electrochimica Acta, 2002. 48(2): p. 197-204.
    5. Das, P.K., X. Li, and Z.-S. Liu, Analysis of liquid water transport in cathode catalyst layer of PEM fuel cells. International Journal of Hydrogen Energy, 2010. 35(6): p. 2403-2416.
    6. Schultz, T., S. Zhou, and K. Sundmacher, Current Status of and Recent Developments in the Direct Methanol Fuel Cell. Chemical Engineering & Technology, 2001. 24(12): p. 1223-1233.
    7. 衣寶廉, 燃料電池 : 原理與應用. 五南圖書出版股份有限公司, 2007.
    8. EG&G Technical Services, I., Fuel Cell Handboo (Seventh Edition). U.S. Department of Energy Office of Fossil Energy, 2004.
    9. Gregor, H., Fuel cell technology handbook. CRC PRESS, 2003.
    10. Dicks, J.L.a.A., Fuel Cell System Explained. John Wiley & SONS,Inc., 2000(2ed).
    11. Barbir, F., PEM fuel cells: theory and practice. Elsevier/Academic Press, 2005.
    12. de Bruijn, F.A., et al., Chapter Five Materials for State-of-the-Art PEM Fuel Cells, and Their Suitability for Operation Above 100°C, in Advances in Fuel Cells, K.D.K. T.S. Zhao and N. Trung Van, Editors. 2007, Elsevier Science. p. 235-336.
    13. Burstein, G.T., et al., Aspects of the anodic oxidation of methanol. Catalysis Today, 1997. 38(4): p. 425-437.
    14. Li, W., et al., Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells. The Journal of Physical Chemistry B, 2003. 107(26): p. 6292-6299.
    15. Gasteiger, H.A., N.M. Markovic, and P.N. Ross, H2 and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru. 1. Rotating Disk Electrode Studies of the Pure Gases Including Temperature Effects. The Journal of Physical Chemistry, 1995. 99(20): p. 8290-8301.
    16. Steigerwalt, E.S., et al., A Pt−Ru/Graphitic Carbon Nanofiber Nanocomposite Exhibiting High Relative Performance as a Direct-Methanol Fuel Cell Anode Catalyst. The Journal of Physical Chemistry B, 2001. 105(34): p. 8097-8101.
    17. Vracar, L.M., D.B. Sepa, and A. Damjanovic, Palladium Electrode in Oxygen-Saturated Aqueous Solutions. Journal of The Electrochemical Society, 1986. 133(9): p. 1835-1839.
    18. Lee, K., et al., Methanol-Tolerant Oxygen Reduction Electrocatalysts Based on Pd-3D Transition Metal Alloys for Direct Methanol Fuel Cells. Journal of The Electrochemical Society, 2006. 153(1): p. A20-A24.
    19. Zhang, L., K. Lee, and J. Zhang, The effect of heat treatment on nanoparticle size and ORR activity for carbon-supported Pd-Co alloy electrocatalysts. Electrochimica Acta, 2007. 52(9): p. 3088-3094.
    20. Xiong, Y., et al., Synthesis and Mechanistic Study of Palladium Nanobars and Nanorods. Journal of the American Chemical Society, 2007. 129(12): p. 3665-3675.
    21. Xiong, Y., et al., Understanding the Role of Oxidative Etching in the Polyol Synthesis of Pd Nanoparticles with Uniform Shape and Size. Journal of the American Chemical Society, 2005. 127(20): p. 7332-7333.
    22. Xiong, Y. and Y. Xia, Shape-Controlled Synthesis of Metal Nanostructures: The Case of Palladium. Advanced Materials, 2007. 19(20): p. 3385-3391.
    23. Xiao, L., et al., Activating Pd by Morphology Tailoring for Oxygen Reduction. Journal of the American Chemical Society, 2008. 131(2): p. 602-608.
    24. Na Tian, Z.-Y.Z.a.S.-G.S., Electrochemical preparation of Pd nanorods with high-index facetsw. The Royal Society of Chemistry, 2009, 1502–1504: p. 1502–1504.
    25. Song, Y.-J., J.-Y. Kim, and K.-W. Park, Synthesis of Pd Dendritic Nanowires by Electrochemical Deposition. Crystal Growth & Design, 2008. 9(1): p. 505-507.
    26. Anderson, A.B., O2 reduction and CO oxidation at the Pt-electrolyte interface. The role of H2O and OH adsorption bond strengths. Electrochimica Acta, 2002. 47(22-23): p. 3759-3763.
    27. Yeager, E., Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. Journal of Molecular Catalysis, 1986. 38(1-2): p. 5-25.
    28. Song, J.M., S.Y. Cha, and W.M. Lee, Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method. Journal of Power Sources, 2001. 94(1): p. 78-84.
    29. Chen, J., T. Matsuura, and M. Hori, Novel gas diffusion layer with water management function for PEMFC. Journal of Power Sources, 2004. 131(1-2): p. 155-161.
    30. Prasanna, M., et al., Influence of cathode gas diffusion media on the performance of the PEMFCs. Journal of Power Sources, 2004. 131(1-2): p. 147-154.
    31. Paganin, V.A., E.A. Ticianelli, and E.R. Gonzalez, Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells. Journal of Applied Electrochemistry, 1996. 26(3): p. 297-304.
    32. Giorgi, L., et al., Influence of the PTFE content in the diffusion layer of low-Pt loading electrodes for polymer electrolyte fuel cells. Electrochimica Acta, 1998. 43(24): p. 3675-3680.
    33. Watanabe, M., M. Tomikawa, and S. Motoo, Preparation of a high performance gas diffusion electrode. Journal of Electroanalytical Chemistry, 1985. 182(1): p. 193-196.
    34. Jordan, L.R., et al., Diffusion layer parameters influencing optimal fuel cell performance. Journal of Power Sources, 2000. 86(1-2): p. 250-254.
    35. Pramanik, H., A. Wragg, and S. Basu, Studies of some operating parameters and cyclic voltammetry for a direct ethanol fuel cell. Journal of Applied Electrochemistry, 2008. 38(9): p. 1321-1328.
    36. Chun, Y.-G., et al., Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes. Journal of Power Sources, 1998. 71(1-2): p. 174-178.
    37. Chu, D. and R. Jiang, Comparative studies of polymer electrolyte membrane fuel cell stack and single cell. Journal of Power Sources, 1999. 80(1-2): p. 226-234.
    38. Xiong, L. and A. Manthiram, High performance membrane-electrode assemblies with ultra-low Pt loading for proton exchange membrane fuel cells. Electrochimica Acta, 2005. 50(16-17): p. 3200-3204.
    39. Kim, H., N.P. Subramanian, and B.N. Popov, Preparation of PEM fuel cell electrodes using pulse electrodeposition. Journal of Power Sources, 2004. 138(1-2): p. 14-24.
    40. Passos, R.R., V.A. Paganin, and E.A. Ticianelli, Studies of the performance of PEM fuel cell cathodes with the catalyst layer directly applied on Nafion membranes. Electrochimica Acta, 2006. 51(25): p. 5239-5245.
    41. Sasikumar, G., J.W. Ihm, and H. Ryu, Dependence of optimum Nafion content in catalyst layer on platinum loading. Journal of Power Sources, 2004. 132(1-2): p. 11-17.
    42. Hirano, S., J. Kim, and S. Srinivasan, High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes. Electrochimica Acta, 1997. 42(10): p. 1587-1593.
    43. Fujiwara, N., et al., Preparation of platinum-ruthenium onto solid polymer electrolyte membrane and the application to a DMFC anode. Electrochimica Acta, 2002. 47(25): p. 4079-4084.
    44. H. Takenaka and E. Torikai, Japan Patent, 1980. 55: p. 38934.
    45. 呂曉婷, 新穎離子通道修飾觸媒層於質子交換膜燃料電池之研究. 國立台灣科技大學化學工程研究所碩士學位論文, 2009.
    46. Lim, B., et al., Shape-Controlled Synthesis of Pd Nanocrystals in Aqueous Solutions. Advanced Functional Materials, 2009. 19(2): p. 189-200.
    47. Tsai, D.-S., C.-H. Chen, and C.-C. Chou, Preparation and characterization of gold-coated silver triangular platelets in nanometer scale. Materials Chemistry and Physics, 2005. 90(2-3): p. 361-366.
    48. Sashikata, K., et al., Adsorbed-Iodine-Catalyzed Dissolution of Pd Single-Crystal Electrodes: Studies by Electrochemical Scanning Tunneling Microscopy. The Journal of Physical Chemistry, 1996. 100(51): p. 20027-20034.
    49. Tang, Y., et al., Temperature Dependent Performance and In Situ AC Impedance of High-Temperature PEM Fuel Cells Using the Nafion-112 Membrane. Journal of The Electrochemical Society, 2006. 153(11): p. A2036-A2043.

    無法下載圖示 全文公開日期 2015/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE