簡易檢索 / 詳目顯示

研究生: 韋玟卉
Wen-Hui Wei
論文名稱: 鐵基奈米核殼結構之觸媒應用於陰離子交換膜燃料電池
Fe-based Core-Shell Nanostructure Catalyst in Anion Exchange Membrane Fuel Cell Application
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 王冠文
Kuan-Wen Wang
陳燦耀
Tsan-Yao Chen
葉禮賢
Li-Hsien Yeh
黃信智
Hsin-Chih Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 90
中文關鍵詞: 氧氣還原反應燃料電池非貴金屬觸媒核殼結構觸媒鐵-氮結構
外文關鍵詞: Oxygen Reduction Reaction, Fuel cell, Non-precious metal catalysts, core-shell structure, Fe-N structure
相關次數: 點閱:245下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 陰離子交換膜燃料電池為一種低汙染、高持久性之綠色能源裝置。其主要的產物為水,且不會產生大量的廢氣或廢熱,可不斷從氫、氧燃料中的化學能直接轉換成電能與熱能,使燃料電池不間斷的發電。為了減少觸媒成本、延長燃料電池的使用壽命,因此希望研究出高效能且穩定的非貴金屬觸媒。
    本研究選用普魯士藍作為觸媒前驅物,經蝕刻後形成中空立方體結構,並加入適當比例之多巴胺與BP2000碳材,最後以化學氣相沉積儀在5% NH3/Ar環境下進行快速熱處理,即可製備出最佳條件之觸媒(Fast HT-NH3)。經電化學量測後,此觸媒有最佳的氧氣還原活性,且電子轉移數可達3.98,與理想電子轉移數4.00相當接近,在30,000圈穩定性測試後,半波電位僅衰退24 mV。將觸媒於鹼性陰離子交換膜燃料電池下進行全電池測試,可展現出263.9 mW/cm2之高輸出功率,由此可知此觸媒在鹼性環境中具備極佳之穩定性與效能。
    材料的結構分析可由穿透式電子顯微鏡(TEM)影像分析中看出觸媒呈現核殼結構,而X光繞射分析儀(XRD)可發現觸媒具有Fe4N之結晶結構,進一步以X光吸收光譜(XAS)證實Fe-N結構之存在,在X射線光電子能譜(XPS)的分析中發現觸媒還擁有高比例的Pyridinic-N與Pyrrolic-N官能基。因Fe3C、Fe4N與Fe2O3之間產生的協同效應,以及含有高比例的含氮官能基與Fe-N基團,使此觸媒(Fast HT-NH3)在氧氣還原反應中具有優異的表現。


    The use of stable non-metallic catalysts in Anion Exchange Membrane Fuel Cells (AEMFCs) will allow for a reduction in its manufacturing cost and increase its lifespan while still maintaining its hallmark efficiency and durability. AEMFCs, like most conventional fuel cells, generate electricity continuously using hydrogen and oxygen as their fuel and producing water and heat as their by-product. The use of more common materials in the construction of such fuel cells will allow for a more widespread deployment of this green technology.
    In this research, Prussian blue is used as the catalyst precursor. After the etching of the sample material, a hollow cube structure was formed to which BP2000 and dopamine were added. The mixture was pyrolyzed rapidly under a 5% NH3/Ar atmosphere to obtain the desired catalyst, labeled as “Fast HT-NH3”. After electrochemical measurement, a significant oxygen reduction activity was observed, with a direct four-electron transfer pathway for the AEMFC application. After 30,000 cycles, “Fast HT-NH3” showed only a 24 mV decrease in half-wave potential. It also showed a good cell performance with a maximum power density of 263.9 mW/cm2 which was very close to Pt/C performance under the same conditions.
    The structural analysis of the material shows that the catalyst has a core-shell structure and confirms the existence of Fe4N. Due to the synergistic effect between Fe3C, Fe4N, Fe2O3, high proportion of nitrogen functional groups, and Fe-N groups, the “Fast HT-NH3” catalyst has an excellent performance in the oxygen reduction reaction.

    中文摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究背景 1.2 綠色能源之燃料電池介紹 1.2.1 燃料電池的種類 1.2.2 陰離子交換膜燃料電池(AEMFC)介紹 1.2.3 陰離子交換膜燃料電池結構介紹 1.2.4 燃料電池的極化現象 第二章 電化學原理與文獻探討 2.1 電化學原理 2.1.1 氧化還原反應 2.1.2 氧氣還原途徑 2.1.3 氧氣還原反應機制 2.1.4 氧氣還原反應之電化學催化 2.2 文獻探討 2.2.1 氮參雜之非貴金屬觸媒 2.2.2 普魯士藍應用於陰極觸媒 2.2.3 蝕刻製備中空奈米結構 2.2.4 中空普魯士藍結構 2.2.5 氮參雜之核-殼結構觸媒 2.3 研究動機 第三章 實驗步驟與研究方法 3.1 實驗規劃 3.2 實驗材料及藥品 3.3 實驗流程 3.4 實驗儀器與設備 3.5 實驗步驟 3.5.1 陰極觸媒製備 3.5.2 半電池觸媒工作電極製備 3.6 儀器分析原理 3.6.1 X光繞射分析儀(X-ray diffraction Spectrometer,XRD) 3.6.2場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope,FSEM) 3.6.3 X射線光電子能譜(X-ray Photoelectron Spectroscopy,XPS) 3.6.4 X光吸收光譜(X-ray Absorption Spectroscopy,XAS) 3.6.5穿透式電子顯微鏡(Transmission Electron Microscope) 3.6.6比表面積及孔徑分析儀(Surface Area & Mesopore Analyzer) 3.6.7 電化學分析儀 3.6.8 燃料電池分析儀 第四章 結果與討論 4.1 蝕刻普魯士藍 4.1.1 蝕刻普魯士藍之形貌分析 4.1.2 蝕刻普魯士藍之X光繞射分析 4.1.3 蝕刻普魯士藍之氧氣還原反應活性比較 4.2 不同熱處理方式觸媒 4.2.1 不同熱處理方式觸媒之X光繞射圖譜分析 4.2.2 不同熱處理方式觸媒之形貌分析 4.2.3 不同熱處理方式觸媒之X光電子能譜分析 4.2.4 不同熱處理方式觸媒之X光吸收光譜分析 4.2.5 不同熱處理方式觸媒之氧氣還原反應活性比較 4.2.6 Fast HT-NH3觸媒之穩定性測試 4.2.7 Fast HT-NH3觸媒之單電池測試 第五章 結論 第六章 參考文獻

    [1] 衣寶廉編著,黃朝榮、林修正修訂, 燃料電池-原理與應用, 五南圖書出版股份有限公司2005.
    [2] N. Ramaswamy, S. Mukerjee, Fundamental mechanistic understanding of electrocatalysis of oxygen reduction on Pt and non-Pt surfaces: acid versus alkaline media, Advances in Physical Chemistry, 2012 (2012).
    [3] Z. Pan, L. An, T. Zhao, Z. Tang, Advances and challenges in alkaline anion exchange membrane fuel cells, Progress in Energy and Combustion Science, 66 (2018) 141-175.
    [4] L. Carrette, K. Friedrich, U. Stimming, Fuel cells-fundamentals and applications, Fuel cells, 1 (2001).
    [5] N.A. Anastasijević, V. Vesović, R.R. Adžić, Determination of the kinetic parameters of the oxygen reduction reaction using the rotating ring-disk electrode: Part I. Theory, Journal of electroanalytical chemistry and interfacial electrochemistry, 229 (1987) 305-316.
    [6] K. Kinoshita, Electrochemical Oxygen Technology, New York: Jhon Wiley & Sons, (1992) 37.
    [7] J. Zhang, Z. Wang, Z. Zhu, The inherent kinetic electrochemical reduction of oxygen into H2O on FeN4-carbon: a density functional theory study, Journal of Power Sources, 255 (2014) 65-69.
    [8] L. Geniès, R. Faure, R. Durand, Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media, Electrochimica Acta, 44 (1998) 1317-1327.
    [9] J.P. Hoare, The Electrochemistry of Oxygen, New York: John Wiley & Sons, (1968) 26-91.
    [10] N.M. Marković, P.N. Ross Jr, Surface science studies of model fuel cell electrocatalysts, Surface Science Reports, 45 (2002) 117-229.
    [11] B.E. Conway, Comprehensive Treatise of Electrochemistry, New York: Kluwer Acadwmic Pub, (1983) 26-91.
    [12] 肖鋼、管衍德、廖福源、陳本源, 燃料電池技術, 全華圖書股份有限公司2010.
    [13] R. Othman, A.L. Dicks, Z. Zhu, Non precious metal catalysts for the PEM fuel cell cathode, International Journal of Hydrogen Energy, 37 (2012) 357-372.
    [14] J. Zagal, P. Bindra, E. Yeager, A Mechanistic Study of  O 2 Reduction on Water Soluble Phthalocyanines Adsorbed on Graphite Electrodes, Journal of The Electrochemical Society, 127 (1980) 1506-1517.
    [15] S. Gupta, D. Tryk, I. Bae, W. Aldred, E. Yeager, Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction, Journal of Applied Electrochemistry, 19 (1989) 19-27.
    [16] H. Wang, R. Côté, G. Faubert, D. Guay, J.P. Dodelet, Effect of the Pre-Treatment of Carbon Black Supports on the Activity of Fe-Based Electrocatalysts for the Reduction of Oxygen, The Journal of Physical Chemistry B, 103 (1999) 2042-2049.
    [17] Z. Chen, D. Higgins, A. Yu, L. Zhang, J. Zhang, A review on non-precious metal electrocatalysts for PEM fuel cells, Energy & Environmental Science, 4 (2011) 3167-3192.
    [18] M. Lefèvre, E. Proietti, F. Jaouen, J.-P. Dodelet, Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells, Science, 324 (2009) 71-74.
    [19] H. Meng, N. Larouche, M. Lefèvre, F. Jaouen, B. Stansfield, J.-P. Dodelet, Iron porphyrin-based cathode catalysts for polymer electrolyte membrane fuel cells: Effect of NH3 and Ar mixtures as pyrolysis gases on catalytic activity and stability, Electrochimica Acta, 55 (2010) 6450-6461.
    [20] Q. Wang, L. Shang, D. Sun‐Waterhouse, T. Zhang, G. Waterhouse, Engineering local coordination environments and site densities for high‐performance Fe‐N‐C oxygen reduction reaction electrocatalysis, SmartMat, 2 (2021) 154-175.
    [21] V. Armel, S. Hindocha, F. Salles, S. Bennett, D. Jones, F.d.r. Jaouen, Structural descriptors of zeolitic–imidazolate frameworks are keys to the activity of Fe–N–C catalysts, Journal of the American Chemical Society, 139 (2017) 453-464.
    [22] X. Zhao, X. Yang, M. Wang, S. Hwang, S. Karakalos, M. Chen, Z. Qiao, L. Wang, B. Liu, Q. Ma, Single-iron site catalysts with self-assembled dual-size architecture and hierarchical porosity for proton-exchange membrane fuel cells, Applied Catalysis B: Environmental, 279 (2020) 119400.
    [23] X. Li, B.N. Popov, T. Kawahara, H. Yanagi, Non-precious metal catalysts synthesized from precursors of carbon, nitrogen, and transition metal for oxygen reduction in alkaline fuel cells, Journal of Power Sources, 196 (2011) 1717-1722.
    [24] C. Zhang, J. Sha, H. Fei, M. Liu, S. Yazdi, J. Zhang, Q. Zhong, X. Zou, N. Zhao, H. Yu, Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium, Acs Nano, 11 (2017) 6930-6941.
    [25] A. Ludi, Prussian blue, an inorganic evergreen, Journal of chemical education, 58 (1981) 1013.
    [26] J. Chen, L. Wei, A. Mahmood, Z. Pei, Z. Zhou, X. Chen, Y. Chen, Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversion, Energy Storage Materials, 25 (2020) 585-612.
    [27] X. Yan, T. Zhao, L. An, G. Zhao, L. Shi, A direct methanol–hydrogen peroxide fuel cell with a Prussian Blue cathode, international journal of hydrogen energy, 41 (2016) 5135-5140.
    [28] K. Itaya, N. Shoji, I. Uchida, Catalysis of the reduction of molecular oxygen to water at Prussian blue modified electrodes, Journal of the American Chemical Society, 106 (1984) 3423-3429.
    [29] Y. Hou, T. Huang, Z. Wen, S. Mao, S. Cui, J. Chen, Metal− organic framework‐derived nitrogen‐doped core‐shell‐structured porous Fe/Fe3C@ C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions, Advanced Energy Materials, 4 (2014) 1400337.
    [30] Y. Gong, Y. Xu, Y. Que, X. Xu, Y. Tang, D. Ye, H. Zhao, J. Zhang, Prussian blue analogues derived electrocatalyst with multicatalytic centers for boosting oxygen reduction reaction in the wide pH range, Journal of Colloid and Interface Science, 612 (2022) 639-649.
    [31] F. Caruso, R.A. Caruso, H. Mohwald, Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating, Science, 282 (1998) 1111-1114.
    [32] Q. Zhang, W. Wang, J. Goebl, Y. Yin, Self-templated synthesis of hollow nanostructures, Nano Today, 4 (2009) 494-507.
    [33] L. Yu, H.B. Wu, X.W.D. Lou, Self-Templated Formation of Hollow Structures for Electrochemical Energy Applications, Accounts of Chemical Research, 50 (2017) 293-301.
    [34] Y. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, A.P. Alivisatos, Formation of hollow nanocrystals through the nanoscale Kirkendall effect, Science, 304 (2004) 711-714.
    [35] J. Li, H.C. Zeng, Hollowing Sn-Doped TiO2 Nanospheres via Ostwald Ripening, Journal of the American Chemical Society, 129 (2007) 15839-15847.
    [36] J. Guan, F. Mou, Z. Sun, W. Shi, Preparation of hollow spheres with controllable interior structures by heterogeneous contraction, Chemical communications, 46 (2010) 6605-6607.
    [37] Z. Wang, L. Zhou, X.W. Lou, Metal oxide hollow nanostructures for lithium‐ion batteries, Wiley Online Library, 2012.
    [38] Q. Zhang, T. Zhang, J. Ge, Y. Yin, Permeable Silica Shell through Surface-Protected Etching, Nano Letters, 8 (2008) 2867-2871.
    [39] M. Hu, S. Furukawa, R. Ohtani, H. Sukegawa, Y. Nemoto, J. Reboul, S. Kitagawa, Y. Yamauchi, Synthesis of Prussian Blue Nanoparticles with a Hollow Interior by Controlled Chemical Etching, Angewandte Chemie International Edition, 51 (2012) 984-988.
    [40] L. Zhang, H.B. Wu, S. Madhavi, H.H. Hng, X.W. Lou, Formation of Fe2O3 microboxes with hierarchical shell structures from metal–organic frameworks and their lithium storage properties, Journal of the American Chemical Society, 134 (2012) 17388-17391.
    [41] Q. Hu, G. Li, G. Li, X. Liu, B. Zhu, X. Chai, Q. Zhang, J. Liu, C. He, Trifunctional Electrocatalysis on Dual-Doped Graphene Nanorings–Integrated Boxes for Efficient Water Splitting and Zn–Air Batteries, Advanced Energy Materials, 9 (2019) 1803867.
    [42] M. Liu, X. Yin, X. Guo, L. Hu, H. Yuan, G. Wang, F. Wang, L. Chen, L. Zhang, F. Yu, High efficient oxygen reduction performance of Fe/Fe3C nanoparticles in situ encapsulated in nitrogen-doped carbon via a novel microwave-assisted carbon bath method, Nano Materials Science, 1 (2019) 131-136.
    [43] J. Song, A.Y. Maulana, H. Kim, B. Yun, H. Gim, Y. Jeong, N. An, C.M. Futalan, J. Kim, N-doped graphitic carbon coated Fe2O3 using dopamine as an anode material for sodium-ion batteries, Journal of Alloys and Compounds, 921 (2022) 166082.
    [44] 國家同步輻射中心, 國家同步輻射, https://www.nsrrc.org.tw/.
    [45] M.B. Zakaria, T. Chikyow, Recent advances in Prussian blue and Prussian blue analogues: synthesis and thermal treatments, Coordination Chemistry Reviews, 352 (2017) 328-345.
    [46] H. Ming, N.L. Torad, Y.-D. Chiang, K.C.-W. Wu, Y. Yamauchi, Size-and shape-controlled synthesis of Prussian Blue nanoparticles by a polyvinylpyrrolidone-assisted crystallization process, CrystEngComm, 14 (2012) 3387-3396.
    [47] Q. Sheng, D. Zhang, Y. Shen, J. Zheng, Synthesis of hollow Prussian blue cubes as an electrocatalyst for the reduction of hydrogen peroxide, Frontiers of Materials Science, 11 (2017) 147-154.
    [48] C. Aparicio, J. Filip, L. Machala, From Prussian blue to iron carbides: high-temperature XRD monitoring of thermal transformation under inert gases, Powder Diffraction, 32 (2017) S207-S212.
    [49] X. Liang, C. Wang, M. Yu, Z. Yao, Y. Zhang, Fe-MOFs derived porous Fe4N@carbon composites with excellent broadband electromagnetic wave absorption properties, Journal of Alloys and Compounds, 910 (2022) 164844.
    [50] M. Yu, Y. Xu, Q. Mao, F. Li, C. Wang, Electromagnetic and absorption properties of nano-sized and micro-sized Fe4N particles, Journal of Alloys and Compounds, 656 (2016) 362-367.
    [51] O.A. Ojelade, S.F. Zaman, Ammonia decomposition for hydrogen production: a thermodynamic study, Chemical Papers, 75 (2021) 57-65.
    [52] J. Liu, S. Webster, D.L. Carroll, Temperature and flow rate of NH3 effects on nitrogen content and doping environments of carbon nanotubes grown by injection CVD method, The Journal of Physical Chemistry B, 109 (2005) 15769-15774.
    [53] L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, R.S. Ruoff, Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction, Energy & Environmental Science, 5 (2012) 7936-7942.
    [54] B. Zhang, C. Wang, D. Liu, Y. Liu, X. Yu, L. Wang, Boosting ORR Electrocatalytic Performance of Metal-Free Mesoporous Biomass Carbon by Synergism of Huge Specific Surface Area and Ultrahigh Pyridinic Nitrogen Doping, ACS Sustainable Chemistry & Engineering, 6 (2018) 13807-13812.
    [55] F. Liu, L. Shi, S. Song, K. Ge, X. Zhang, Y. Guo, D. Liu, Simultaneously Engineering the Coordination Environment and Pore Architecture of MetalOrganic Framework-Derived Single-Atomic Iron Catalysts for Ultraefficient Oxygen Reduction, Small, 17 (2021).
    [56] J. Liu, P. Song, W. Xu, Structure-activity relationship of doped-nitrogen (N)-based metal-free active sites on carbon for oxygen reduction reaction, Carbon, 115 (2017) 763-772.
    [57] S.-H. Liu, J.-R. Wu, Influence of nitrogen and iron precursors on the synthesis of FeNx/carbons electrocatalysts toward oxygen reduction reaction in acid solution, Electrochimica Acta, 135 (2014) 147-153.
    [58] A.P. Grosvenor, J.E. Greedan, Analysis of Metal Site Preference and Electronic Structure of Brownmillerite-Phase Oxides (A2B′xB2−xO5; A = Ca, Sr; B′/B = Al, Mn, Fe, Co) by X-ray Absorption Near-Edge Spectroscopy, The Journal of Physical Chemistry C, 113 (2009) 11366-11372.
    [59] X. Ao, W. Zhang, Z. Li, L. Lv, Y. Ruan, H.-H. Wu, W.-H. Chiang, C. Wang, M. Liu, X.C. Zeng, Unraveling the high-activity nature of Fe–N–C electrocatalysts for the oxygen reduction reaction: the extraordinary synergy between Fe–N4 and Fe4N, Journal of Materials Chemistry A, 7 (2019) 11792-11801.
    [60] L. Hu, C. Dai, L. Chen, Y. Zhu, Y. Hao, Q. Zhang, L. Gu, X. Feng, S. Yuan, L. Wang, B. Wang, Metal-Triazolate-Framework-Derived FeN4Cl1 Single-Atom Catalysts with Hierarchical Porosity for the Oxygen Reduction Reaction, Angewandte Chemie International Edition, 60 (2021) 27324-27329.
    [61] Y. Nabae, Q. Yuan, S. Nagata, K. Kusaba, T. Aoki, N. Takao, T. Itoh, M. Arao, H. Imai, K. Higashi, T. Sakata, T. Uruga, Y. Iwasawa, In Situ X-ray Absorption Spectroscopy to Monitor the Degradation of Fe/N/C Cathode Catalyst in Proton Exchange Membrane Fuel Cells, Journal of The Electrochemical Society, 168 (2021) 014513.
    [62] F. Chen, C. Yao, J. Qian, J. Fan, X. Chen, W. Wu, L. Xu, Q. Liu, W. Li, α-Fe2O3/alkalinized C3N4 heterostructure as efficient electrocatalyst for oxygen reduction reaction, Journal of Materials Science, 57 (2022) 2012-2020.
    [63] W. Feng, M. Liu, J. Liu, Y. Song, F. Wang, Well-defined Fe, Fe3C, and Fe2O3 heterostructures on carbon black: a synergistic catalyst for oxygen reduction reaction, Catalysis Science & Technology, 8 (2018) 4900-4906.
    [64] R. Praats, M. Käärik, A. Kikas, V. Kisand, J. Aruväli, P. Paiste, M. Merisalu, J. Leis, V. Sammelselg, J.H. Zagal, Electrocatalytic oxygen reduction reaction on iron phthalocyanine-modified carbide-derived carbon/carbon nanotube composite electrocatalysts, Electrochimica Acta, 334 (2020) 135575.
    [65] R. Sibul, E. Kibena‐Põldsepp, S. Ratso, M. Kook, M.T. Sougrati, M. Käärik, M. Merisalu, J. Aruväli, P. Paiste, A. Treshchalov, Iron‐and Nitrogen‐Doped Graphene‐Based Catalysts for Fuel Cell Applications, ChemElectroChem, 7 (2020) 1739-1747.
    [66] J. Lilloja, M. Mooste, E. Kibena-Põldsepp, A. Sarapuu, B. Zulevi, A. Kikas, H.-M. Piirsoo, A. Tamm, V. Kisand, S. Holdcroft, A. Serov, K. Tammeveski, Mesoporous iron-nitrogen co-doped carbon material as cathode catalyst for the anion exchange membrane fuel cell, Journal of Power Sources Advances, 8 (2021) 100052.
    [67] A. Sokka, M. Mooste, M. Käärik, V. Gudkova, J. Kozlova, A. Kikas, V. Kisand, A. Treshchalov, A. Tamm, P. Paiste, Iron and cobalt containing electrospun carbon nanofibre-based cathode catalysts for anion exchange membrane fuel cell, International Journal of Hydrogen Energy, 46 (2021) 31275-31287.
    [68] M. Mooste, T. Tkesheliadze, J. Kozlova, A. Kikas, V. Kisand, A. Treshchalov, A. Tamm, J. Aruväli, J.H. Zagal, A.M. Kannan, Transition metal phthalocyanine-modified shungite-based cathode catalysts for alkaline membrane fuel cell, International Journal of Hydrogen Energy, 46 (2021) 4365-4377.

    QR CODE