簡易檢索 / 詳目顯示

研究生: 蕭諭農
Yu-Nong Hsiao
論文名稱: 咪唑功能化的水溶性螢光共軛高分子具有可調控的氣體響應性應用於生物影像
Imidazole-Functionalized Water-soluble Fluorescent Conjugated Polymer as Controllable Gas-responsiveness for Biological Imaging.
指導教授: 鄭智嘉
Chih-Chia Cheng
口試委員: 謝永堂
Yeong-Tarng Shieh
陳建光
Jem-Kun Chen
邱智瑋
Chih-Wei Chiu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 149
中文關鍵詞: 咪唑共軛高分子氣體響應性二氧化碳生物影像
外文關鍵詞: Imidazole, Conjugated polymer, Gas-responsiveness, Carbon dioxide, Biological imaging
相關次數: 點閱:204下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以氯化鐵氧化聚合方法成功合成出以疏水性聚噻吩為主體(作為發光骨架)及親水性的咪唑基團組成的水溶性共軛高分子。聚噻吩具有良好的光、電特性,可於巨觀與微觀條件下觀察螢光表現,而具有親水性的咪唑側鏈作為氣體響應性的官能基團,可以在水溶液中自組裝形成奈米微胞,並且經過二氧化碳與氮氣交替鼓泡入水溶液中,可以展現出具有回復性質的顆粒粒徑、表面電位與螢光特性,並且此一回復性質可以持續多次仍維持高穩定性。在體外細胞實驗中,pH 7.4、37°C生理條件下,在正常細胞與癌細胞中均展現出低細胞毒性;在細胞的螢光影像與流式細胞儀的研究表明,在二氧化碳鼓泡後,能展現出更高的細胞螢光強度與細胞攝取率,證實本實驗的實驗材料在未來有極佳潛力應用於生醫螢光探針等領域。


    In this study, a water-soluble conjugated polymer composed of a hydrophobic polythiophene as the main body (as a light-emitting skeleton) and a hydrophilic imidazole group was successfully synthesized by the oxidative polymerization method of ferric chloride. Polythiophene has good optical and electrical properties, and its fluorescence performance can be observed under macro and micro conditions. The hydrophilic imidazole side chain, as a gas-responsive functional group, can self-assemble in aqueous solution to form nano-microstructures. After carbon dioxide and nitrogen are alternately bubbled into the aqueous solution, it can exhibit particle size, zeta potential and fluorescence characteristics with recovery properties, and this recovery property can continue for many times and still maintain high stability.
    In the in vitro cell experiment, under physiological conditions of pH 7.4 and 37°C, it showed low cytotoxicity in normal cells and cancer cells. Fluorescence images and flow cytometry showed that after carbon dioxide bubbling can show higher cell fluorescence intensity and cell uptake rate, it confirmed that the experimental materials in this research have great potential to be used in the fields of biomedical fluorescent probes in the future.

    摘要 I Abstract II 目錄 VII 表目錄 X 圖目錄 XIII 第一章 緒論 1 1.1研究背景 1 1.2研究動機 3 第二章 文獻回顧 6 2.1水溶性共軛高分子 6 2.1.1高分子概述 6 2.1.2共軛高分子概述 8 2.1.3水溶性共軛高分子概述及發展近況 10 2.2水溶性聚噻吩 13 2.2.1水溶性聚噻吩概述 13 2.2.2聚噻吩聚合方式 15 2.2.3聚噻吩奈米粒子形成 20 2.3刺激應答 22 2.3.1刺激與反應概述 22 2.3.2刺激響應性應答 23 2.3.3刺激應答型高分子概述 27 2.3.4 CO2刺激響應性應答 28 2.4生物影像 31 2.4.1生物顯影技術概述 31 2.4.2螢光探針發展特性及其應用 33 2.5文獻回顧總結 35 第三章 實驗材料與方法 36 3.1研究設計 36 3.2實驗合成步驟 37 3.2.1合成單體前驅物 37 3.2.2合成單體 38 3.2.3合成高分子 39 3.3實驗材料 40 3.3.1實驗藥品 40 3.3.2實驗溶劑 42 3.3.3細胞實驗材料 43 3.3.4相關實驗材料 46 3.4實驗儀器與設備參數 48 3.4.1基質輔助雷射脫附游離飛行時間式質譜儀 48 3.4.2電灑游離質譜儀 49 3.4.3液態核磁共振光譜 50 3.4.4旋轉塗佈機 51 3.4.5震盪混合器 51 3.4.6斜式旋轉濃縮機 51 3.4.7元素分析儀 53 3.4.8高效能冷凍乾燥機 53 3.4.9傅立葉轉換紅外光譜 54 3.4.10紫外線可見光光譜儀 55 3.4.11光致螢光光譜儀 56 3.4.12奈米粒徑分析儀及電位功能 58 3.4.13原子力顯微鏡 59 3.4.14高解析度場發射掃描式電子顯微鏡 59 3.4.15桌上型酸鹼度計 60 3.4.16 CO2培養箱 61 3.4.17螢光顯微鏡 62 3.4.18酵素免疫分析儀 62 3.4.19冷凍離心機 63 3.4.20流式細胞儀 63 3.5樣品製備 65 3.5.1高分子樣品保存與製備 65 3.5.2 NMR試管製備 65 3.5.3 臨界微胞濃度 65 3.5.4 SEM與AFM矽晶片製備 66 3.5.5氣體響應性實驗 67 3.6細胞生物性製備 68 3.6.1磷酸鹽緩衝生理鹽水 68 3.6.2胰蛋白酶 68 3.6.3細胞培養基 68 3.6.4細胞解凍培養 69 3.6.5細胞培養條件 69 3.6.6細胞生物毒性測試 70 3.6.7螢光顯微鏡製備 70 3.6.8流式細胞儀 71 第四章 結果與討論 72 4.1 高分子材料鑑定 72 4.1.1單體透過傅里葉轉換紅外光譜材料鑑定 73 4.1.2單體透過核磁共振儀材料鑑定 74 4.1.3單體透過元素分析儀材料鑑定 76 4.1.4單體透過質譜儀材料鑑定 77 4.1.5高分子之核磁共振儀1H NMR光譜圖 78 4.1.6高分子以基質輔助雷射脫附游離飛行時間式質譜儀材料鑑定 79 4.1.7高分子水溶液最適化濃度測試 80 4.2 材料性質分析 84 4.2.1高分子之臨界微胞濃度 84 4.2.2高分子氣體響應前後之光致發光光譜 87 4.2.3高分子氣體響應前後之螢光穩定度 90 4.2.4高分子氣體響應前後之粒徑、酸鹼性、表面電荷變化 93 4.2.5高分子氣體響應前後之掃描式電子顯微鏡、原子力顯微鏡結構探討 98 4.2.6高分子氣體響應前後之可逆性測試 102 4.3 生醫影像分析 105 4.3.1高分子氣體響應前後之細胞毒性測試 105 4.3.2高分子氣體響應前後之螢光顯微鏡觀察 107 4.3.3高分子氣體響應前後之流式細胞儀測試 110 4.3.4高分子氣體響應前後之溶血試驗 113 第五章 結論 115 第六章 未來展望 116 第七章 參考文獻 117

    1. Wang, H., Vagin, S. I., Rieger, B., & Meldrum, A. (2020). An ultrasensitive fluorescent paper-based CO2 sensor. ACS applied materials & interfaces, 12(18), 20507-20513.
    2. Yuan, H., Fan, Y., Xing, C., Niu, R., Chai, R., Zhan, Y., ... & Xu, J. (2016). Conjugated polymer-based hybrid materials for turn-on detection of CO2 in plant photosynthesis. Analytical chemistry, 88(12), 6593-6597.
    3. Wang, K., Amin, K., An, Z., Cai, Z., Chen, H., Chen, H., ... & Tang, B. Z. (2020). Advanced functional polymer materials. Materials Chemistry Frontiers, 4(7), 1803-1915.
    4. Xu, X., Liu, R., & Li, L. (2015). Nanoparticles made of π-conjugated compounds targeted for chemical and biological applications. Chemical Communications, 51(94), 16733-16749.
    5. Tuncel, D. (2019). π-Conjugated nanostructured materials: preparation, properties and photonic applications. Nanoscale Advances, 1(1), 19-33.
    6. Wang, Y., Pei, Z., Feng, W., & Pei, Y. (2019). Stimuli-responsive supramolecular nano-systems based on pillar [n] arenes and their related applications. Journal of Materials Chemistry B, 7(48), 7656-7675.
    7. Zhang, W., & Gao, C. (2017). Morphology transformation of self-assembled organic nanomaterials in aqueous solution induced by stimuli-triggered chemical structure changes. Journal of Materials Chemistry A, 5(31), 16059-16104.
    8. Wang, H., Zhou, L., Zhou, C., Zhao, W., Wang, J., Liu, L., ... & Wang, Y. (2017). Preparation of gemini surfactant/conjugated polymer aggregates for enhanced fluorescence and bioimaging application. ACS applied materials & interfaces, 9(28), 23544-23554.
    9. Yan, Q., & Zhao, Y. (2014). Block copolymer self-assembly controlled by the “green” gas stimulus of carbon dioxide. Chemical communications, 50(79), 11631-11641.
    10. Varnava, C. K., & Patrickios, C. S. (2020). Polymer networks one hundred years after the macromolecular hypothesis: A tutorial review. Polymer, 123322.
    11. Verpaalen, R. C., Engels, T., Schenning, A. P., & Debije, M. G. (2020). Stimuli-Responsive Shape Changing Commodity Polymer Composites and Bilayers. ACS Applied Materials & Interfaces, 12(35), 38829-38844.
    12. Criado-Gonzalez, M., Dominguez-Alfaro, A., Lopez-Larrea, N., Alegret, N., & Mecerreyes, D. (2021). Additive Manufacturing of Conducting Polymers: Recent Advances, Challenges, and Opportunities. ACS Applied Polymer Materials.
    13. Rother, M., Nussbaumer, M. G., Renggli, K., & Bruns, N. (2016). Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science. Chemical Society Reviews, 45(22), 6213-6249.
    14. Baek, P., Voorhaar, L., Barker, D., & Travas-Sejdic, J. (2018). Molecular approach to conjugated polymers with biomimetic properties. Accounts of chemical research, 51(7), 1581-1589.
    15. Zhan, H., Chen, J., Zhang, C., Zhang, J., & Fan, L. J. (2021). Design, Synthesis, and Adhesion of Fluorescent Conjugated Polymers with Pendant Catechol Groups. ACS Applied Polymer Materials.
    16. McQuade, D. T., Pullen, A. E., & Swager, T. M. (2000). Conjugated polymer-based chemical sensors. Chemical Reviews, 100(7), 2537-2574.
    17. Feng, L., Zhu, C., Yuan, H., Liu, L., Lv, F., & Wang, S. (2013). Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chemical Society Reviews, 42(16), 6620-6633.
    18. Zhu, C., Liu, L., Yang, Q., Lv, F., & Wang, S. (2012). Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chemical reviews, 112(8), 4687-4735.
    19. Zhou, L., Lv, F., Liu, L., & Wang, S. (2019). Water-soluble conjugated organic molecules as optical and electrochemical materials for interdisciplinary biological applications. Accounts of chemical research, 52(11), 3211-3222.
    20. Yin, C., Song, W., Jiang, R., Lu, X., Hu, W., Shen, Q., ... & Huang, W. (2014). Oligo (p-phenyleneethynylene) embedded amphiphiles: synthesis, photophysical properties and self-assembled nanoparticles with high structural stability and photostability for cell imaging. Polymer Chemistry, 5(19), 5598-5608.
    21. Arumugam, S., Vutukuri, D. R., Thayumanavan, S., & Ramamurthy, V. (2005). Amphiphilic homopolymer as a reaction medium in water: product selectivity within polymeric nanopockets. Journal of the American Chemical Society, 127(38), 13200-13206.
    22. Liu, L., Yu, M., Duan, X., & Wang, S. (2010). Conjugated polymers as multifunctional biomedical platforms: Anticancer activity and apoptosis imaging. Journal of Materials Chemistry, 20(33), 6942-6947.
    23. Lan, M., Liu, W., Ge, J., Wu, J., Wang, H., Zhang, W., ... & Wang, P. (2012). A polythiophene-derived ratiometric fluorescent sensor for highly sensitive determination of carbenicillin in aqueous solution. Chemical Communications, 48(54), 6818-6820.
    24. Niemi, V. M., Knuuttila, P., Österholm, J. E., & Korvola, J. (1992). Polymerization of 3-alkylthiophenes with FeCl3. Polymer, 33(7), 1559-1562.
    25. Liu, B., Wang, S., Bazan, G. C., & Mikhailovsky, A. (2003). Shape-adaptable water-soluble conjugated polymers. Journal of the American Chemical Society, 125(44), 13306-13307.
    26. Feng, X., Yang, G., Liu, L., Lv, F., Yang, Q., Wang, S., & Zhu, D. (2012). A convenient preparation of multi‐spectral microparticles by bacteria‐mediated assemblies of conjugated polymer nanoparticles for cell imaging and barcoding. Advanced Materials, 24(5), 637-641.
    27. Moon, J. H., McDaniel, W., MacLean, P., & Hancock, L. F. (2007). Live‐cell‐permeable poly (p‐phenylene ethynylene). Angewandte Chemie, 119(43), 8371-8373.
    28. Wang, B., Yuan, H., Zhu, C., Yang, Q., Lv, F., Liu, L., & Wang, S. (2012). Polymer-drug conjugates for intracellar molecule-targeted photoinduced inactivation of protein and growth inhibition of cancer cells. Scientific reports, 2(1), 1-8.
    29. Tu, Y., Zhou, Y., Zhang, D., Yang, J., Li, X., Ji, K., ... & Zhang, Q. (2021). Light-Induced Reactive Oxygen Species (ROS) Generator for Tumor Therapy through an ROS Burst in Mitochondria and AKT-Inactivation-Induced Apoptosis. ACS Applied Bio Materials.
    30. Wu, C., Jin, Y., Schneider, T., Burnham, D. R., Smith, P. B., & Chiu, D. T. (2010). Ultrabright and bioorthogonal labeling of cellular targets using semiconducting polymer dots and click chemistry. Angewandte Chemie International Edition, 49(49), 9436-9440.
    31. Wu, C., Hansen, S. J., Hou, Q., Yu, J., Zeigler, M., Jin, Y., ... & Chiu, D. T. (2011). Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting. Angewandte Chemie, 123(15), 3492-3496.
    32. Howes, P., Green, M., Levitt, J., Suhling, K., & Hughes, M. (2010). Phospholipid encapsulated semiconducting polymer nanoparticles: their use in cell imaging and protein attachment. Journal of the American Chemical Society, 132(11), 3989-3996.
    33. Xing, C., Xu, Q., Tang, H., Liu, L., & Wang, S. (2009). Conjugated polymer/porphyrin complexes for efficient energy transfer and improving light-activated antibacterial activity. Journal of the American Chemical Society, 131(36), 13117-13124.
    34. Yang, G., Liu, L., Yang, Q., Lv, F., & Wang, S. (2012). A multifunctional cationic pentathiophene: Synthesis, organelle‐selective imaging, and anticancer activity. Advanced Functional Materials, 22(4), 736-743.
    35. Hu, L., Wan, Y., Zhang, Q., & Serpe, M. J. (2020). Harnessing the power of stimuli‐responsive polymers for actuation. Advanced Functional Materials, 30(2), 1903471.
    36. Hu, L., Zhang, Q., Li, X., & Serpe, M. J. (2019). Stimuli-responsive polymers for sensing and actuation. Materials Horizons, 6(9), 1774-1793.
    37. Bauri, K., Nandi, M., & De, P. (2018). Amino acid-derived stimuli-responsive polymers and their applications. Polymer Chemistry, 9(11), 1257-1287.
    38. Lugger, S. J., Houben, S. J., Foelen, Y., Debije, M. G., Schenning, A. P., & Mulder, D. J. (2021). Hydrogen-Bonded Supramolecular Liquid Crystal Polymers: Smart Materials with Stimuli-Responsive, Self-Healing, and Recyclable Properties. Chemical Reviews.
    39. Li, C., Wang, K., Li, J., & Zhang, Q. (2020). Recent progress in stimulus-responsive two-dimensional metal–organic frameworks. ACS Materials Letters, 2(7), 779-797.
    40. Lin, X., Wang, X., Zeng, L., Wu, Z. L., Guo, H., & Hourdet, D. (2021). Stimuli-Responsive Toughening of Hydrogels. Chemistry of Materials.
    41. Korde, J. M., & Kandasubramanian, B. (2019). Fundamentals and effects of biomimicking stimuli-responsive polymers for engineering functions. Industrial & Engineering Chemistry Research, 58(23), 9709-9757.
    42. Yan, Y., Sun, N., Li, F., Jia, X., Wang, C., & Chao, D. (2017). Multiple stimuli-responsive fluorescence behavior of novel polyamic acid bearing oligoaniline, triphenylamine, and fluorene groups. ACS applied materials & interfaces, 9(7), 6497-6503.
    43. Schmidt, M., Franken, A., Wilms, D., Fehm, T., Neubauer, H. J., & Schmidt, S. (2021). Selective Adhesion and Switchable Release of Breast Cancer Cells via Hyaluronic Acid Functionalized Dual Stimuli-Responsive Microgel Films. ACS Applied Bio Materials, 4(8), 6371-6380.
    44. Huang, Y., Xue, Z., & Zeng, S. (2020). Hollow mesoporous Bi@ PEG-FA nanoshell as a novel dual-stimuli-responsive nanocarrier for synergistic chemo-photothermal cancer therapy. ACS Applied Materials & Interfaces, 12(28), 31172-31181.
    45. Sikder, A., Chaudhuri, A., Mondal, S., & Singh, N. P. (2021). Recent Advances on Stimuli-Responsive Combination Therapy against Multidrug-Resistant Bacteria and Biofilm. ACS Applied Bio Materials.
    46. Ganta, S., & Chand, D. K. (2017). Multi-Stimuli-Responsive Metallogel Molded from a Pd2 L 4-Type Coordination Cage: Selective Removal of Anionic Dyes. Inorganic chemistry, 57(7), 3634-3645.
    47. Lin, P., Chen, H., Li, A., Zhuang, H., Chen, Z., Xie, Y., ... & Cheng, Z. (2020). Bioinspired Multiple Stimuli-Responsive Optical Microcapsules Enabled by Microfluidics. ACS Applied Materials & Interfaces, 12(41), 46788-46796.
    48. Li, L., Yang, Z., & Chen, X. (2020). Recent Advances in Stimuli-Responsive Platforms for Cancer Immunotherapy. Accounts of Chemical Research, 53(10), 2044-2054.
    49. Hu, X., Zhang, Y., Xie, Z., Jing, X., Bellotti, A., & Gu, Z. (2017). Stimuli-responsive polymersomes for biomedical applications. Biomacromolecules, 18(3), 649-673.
    50. Chen, L. J., & Yang, H. B. (2018). Construction of stimuli-responsive functional materials via hierarchical self-assembly involving coordination interactions. Accounts of chemical research, 51(11), 2699-2710.
    51. Mai, Z., Li, H., Gao, Y., Niu, Y., Li, Y., de Rooij, N. F., ... & Zhou, G. (2020). Synergy of CO 2-response and aggregation induced emission in a small molecule: renewable liquid and solid CO 2 chemosensors with high sensitivity and visibility. Analyst, 145(10), 3528-3534.
    52. Yang, G., Hu, R., Ding, H. M., Kochovski, Z., Mei, S., Lu, Y., ... & Jiang, M. (2018). CO 2-switchable response of protein microtubules: behaviour and mechanism. Materials Chemistry Frontiers, 2(9), 1642-1646.
    53. Yan, Q., & Zhao, Y. (2014). Block copolymer self-assembly controlled by the “green” gas stimulus of carbon dioxide. Chemical communications, 50(79), 11631-11641.
    54. Jiang, H., Wang, E., & Wang, J. (2015). Gas-breathing polymer film for constructing switchable ionic diodes. RSC Advances, 5(45), 35622-35630.
    55. Mabire, A. B., Brouard, Q., Pitto-Barry, A., Williams, R. J., Willcock, H., Kirby, N., ... & O'Reilly, R. K. (2016). CO 2/pH-responsive particles with built-in fluorescence read-out. Polymer Chemistry, 7(38), 5943-5948.
    56. Terai, T., & Nagano, T. (2008). Fluorescent probes for bioimaging applications. Current opinion in chemical biology, 12(5), 515-521.
    57. Goto, Y., Matsuno, R., Konno, T., Takai, M., & Ishihara, K. (2008). Artificial cell membrane-covered nanoparticles embedding quantum dots as stable and highly sensitive fluorescence bioimaging probes. Biomacromolecules, 9(11), 3252-3257.
    58. Maestro, L. M., Rodríguez, E. M., Rodríguez, F. S., la Cruz, M. I. D., Juarranz, A., Naccache, R., ... & Solé, J. G. (2010). CdSe quantum dots for two-photon fluorescence thermal imaging. Nano letters, 10(12), 5109-5115.
    59. Cai, L., Li, H., Yu, X., Wu, L., Wei, X., James, T. D., & Huang, C. (2021). Green Fluorescent Protein GFP-Chromophore-Based Probe for the Detection of Mitochondrial Viscosity in Living Cells. ACS Applied Bio Materials, 4(3), 2128-2134.
    60. Zhang, J., Fu, Y., & Mahdavi, F. (2012). Bimetallic nanoshells for metal-enhanced fluorescence with broad band fluorophores. The Journal of Physical Chemistry C, 116(45), 24224-24232.
    61. Cheng, C. C., Lai, Y. C., Shieh, Y. T., Chang, Y. H., Lee, A. W., Chen, J. K., ... & Lai, J. Y. (2020). CO2-Responsive Water-Soluble Conjugated Polymers for In Vitro and In Vivo Biological Imaging. Biomacromolecules, 21(12), 5282-5291.
    62. Liu, Y., Liu, J., Chen, D., Wang, X., Liu, Z., Liu, H., ... & Zou, Y. (2019). Quinoxaline-based semiconducting polymer dots for in vivo NIR-II fluorescence imaging. Macromolecules, 52(15), 5735-5740.
    63. Lv, Y., Liu, M., Zhang, Y., Wang, X., Zhang, F., Li, F., ... & Tian, Z. (2018). Cancer cell membrane-biomimetic nanoprobes with two-photon excitation and near-infrared emission for intravital tumor fluorescence imaging. ACS nano, 12(2), 1350-1358.
    64. Matsuzaki, H., Kamiya, M., Iwatate, R. J., Asanuma, D., Watanabe, T., & Urano, Y. (2016). Novel hexosaminidase-targeting fluorescence probe for visualizing human colorectal cancer. Bioconjugate chemistry, 27(4), 973-981.
    65. Grynkiewicz, G., Poenie, M., & Tsien, R. Y. (1985). A new generation of Ca2+ indicators with greatly improved fluorescence properties. Journal of biological chemistry, 260(6), 3440-3450.
    66. Cai, Z., Ye, Z., Yang, X., Chang, Y., Wang, H., Liu, Y., & Cao, A. (2011). Encapsulated enhanced green fluorescence protein in silica nanoparticle for cellular imaging. Nanoscale, 3(5), 1974-1976.
    67. Jia, B., Zhang, X., Wang, B., Chen, M., Lv, F., Wang, S., & Wang, F. (2018). Dual-modal probe based on polythiophene derivative for pre-and intraoperative mapping of lymph nodes by SPECT/optical imaging. ACS applied materials & interfaces, 10(7), 6646-6651.
    68. Watanabe, K., Osaka, I., Yorozuya, S., & Akagi, K. (2012). Helically π-stacked thiophene-based copolymers with circularly polarized fluorescence: high dissymmetry factors enhanced by self-ordering in chiral nematic liquid crystal phase. Chemistry of Materials, 24(6), 1011-1024.

    無法下載圖示 全文公開日期 2027/01/24 (校內網路)
    全文公開日期 2027/01/24 (校外網路)
    全文公開日期 2027/01/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE