簡易檢索 / 詳目顯示

研究生: 李陵杰
Ling-Jie Li
論文名稱: 銀-碳共改質二氧化鈦及其紫外光與可見光應答光催化活性之研究
Study on Silver-Carbon Codoped Titania and its Photocatalytic Activity under Ultraviolet and Visible-light Illuminations
指導教授: 曾堯宣
Yao-hsuan Tseng
口試委員: 顧洋
Young Ku
謝育民
Yu-Min Hsieh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 190
中文關鍵詞: 銀-碳共改質二氧化鈦含浸法可見光催化活性甲基橙氮氧化物共伴效應
外文關鍵詞: Ag-C co-doped TiO2, impregnation, photoactivity, methyl orange, NOx, synergistic effect
相關次數: 點閱:333下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要探討銀與碳共同改質二氧化鈦之紫外光與可見光應答光催化活性,選用一般商業用銳鈦礦(anatase)晶相的ST-01進行改質程序,係因ST-01具有較大的能隙值而使其應用之激發光波長範圍受到限制,並且ST-01雖具有高表面積,但其缺乏良好電子與電洞的分離機制而影響其光催化活性,因此藉由銀與碳共同改質的方式,以提升其於紫外光與可見光激發下的反應活性,並且探討其光催化活性之來源。
實驗中係選用醇類與硝酸銀作為碳與銀之前驅物,利用含浸法(Impregnation)進行表面改質,並由碳摻雜量、鍛燒溫度、碳前驅物種類與銀含量等實驗變因中找出最佳操作參數,藉以釐清硝酸銀與碳分別對於二氧化鈦活性的影響,亦進一步探討兩者共伴效應的影響。物性分析係以XRD檢測樣品於改質前後之晶相結構與晶粒大小的變化、Raman分析摻雜於觸媒表面之碳結構、XPS分析改質物於二氧化鈦表面之化學組態、ATR-FTIR檢測光觸媒之表面官能基、TGA分析觸媒表面之碳摻雜量、UV-Vis量測二氧化鈦於改質前後光吸收度與能隙值的變化、PL分析觸媒之電子與電洞的再結合率等,並以光催化液相甲基橙的降解反應與氣相氮氧化物的氧化反應,探討觸媒之光催化活性。
碳摻雜於二氧化鈦表面可有效提升其可見光吸收能力,拓展其光激發波長的範圍,但是其電子與電洞的再結合率仍過高;銀改質二氧化鈦雖可有效抑制其電子與電洞的再結合,卻無法有效縮減其能隙值而使其無法受可見光的激發產生活性。因此,藉由兩者的結合,除可大幅縮減二氧化鈦的能隙值,亦能有效抑制光激發電子與電洞的再結合。此外,藉由硝酸銀的添加可有助於碳前驅物於鍛燒過程中的碳化反應,使銀與碳共同改質二氧化鈦表面具有較多碳酸鹽類的官能基,且銀改質可有效提升二氧化鈦表面氫氧官能基的含量。因此,藉由硝酸銀與碳共同改質的方式,可有效提升二氧化鈦之紫外光與可見光的光催化活性。


In this study, we focused on the ultraviolet-light-responsively and visible-light-responsively photoactivity of silver-carbon co-doped titania. The commercially available anatase-phase titania, ST-01, was used as the raw material for modification. The practical application of ST-01 in the visible region is limited due to its large band gap. Moreover, the activity of ST-01 is moderate due to the lack of good separation rate of the photoinduced charge carries, even though it has large specific surface area. In this work, the Ag-C co-doped modification was applied to enhance the photoactivity under both ultraviolet and visible illuminations, and the rational mechanism was also investigated in detail.
The Ag-C co-doped TiO2 was prepared by an impregnation method using alcohols and silver nitrate as the carbon and silver sources, respectively. The optimum preparation parameters were obtained by studying the effects of amount of alcohol, calcination temperature, kind of carbon precursor, and amount of silver. The individual effects of silver nitrate and carbonaceous species on the photoactivity of titania were clarified from the results of series experiments, and the reason for the synergistic effect between silver nitrate and alcohol for the improvement of photoactivity was also obtained.
Physical characterization of silver-carbon codoped titania sample, including crystal structure, grain size, carbon structure, chemical states of dopants, surface functional groups, carbon content, band gap, and charge carries recombination rate, were identified using X-ray diffraction,
Raman spectroscopy, X-ray photoelectron spectroscopy, fourier transform infrared spectroscopy, thermal gravity analysis, UV-visible absorption spectra, and photoluminescence, respectively. The activities of the synthesized photocatalysts were evaluated for the oxidation of NO and decolorization of dye under illuminations by ultraviolet and visible light.
The visible-light absorption of titania could be enhanced by the carbon-modification at its surface, but the electron-hole recombination rate was not still reduced efficiently. In the contrast, the charge carries separation efficiency of titania could be improved with using Ag species as dopant, but its band gap would not be narrowed effectively. Therefore, the properly Ag-C co-doped process could not only obviously narrow the band gap of titania, but also effectively suppress the charge carries recombination. In addition, the carbonization effect of the carbon precursor would be improved with the presence of silver nitrate, leading to plenty of carbonate and hydroxyl groups produced on the photocatalyst. Therefore, the ultraviolet-light-responsively and visible-light- responsively photoactivities of titania would be both greatly enhanced by the synergistic effect between silver and carbon species.

摘要 ............................................................................................................. I Abstract ................................................................................................... III 致謝 ............................................................................................................ V 目錄 .......................................................................................................... VI 表目錄 ................................................................................................... VIII 圖目錄 ........................................................................................................ X 第一章 前言............................................................................................... 1 1-1 光觸媒簡介 ...................................................................................... 1 1-2 光觸媒之應用 .................................................................................. 4 1-3 光催化反應與原理 .......................................................................... 7 第二章 文獻回顧 .................................................................................... 10 2-1 二氧化鈦簡介 ................................................................................ 10 2-2 二氧化鈦製備方法 ........................................................................ 14 2-3 二氧化鈦改質方法 ........................................................................ 17 2-4 碳改質二氧化鈦之文獻回顧 ........................................................ 18 2-5 銀改質二氧化鈦之文獻回顧 ........................................................ 22 2-6 金屬與非金屬共同改質二氧化鈦之文獻回顧 ............................ 37 2-7 研究動機 ........................................................................................ 46 第三章 研究方法 .................................................................................... 48 3-1 實驗設計 ........................................................................................ 48 3-2 藥品與儀器設備 ............................................................................ 50 3-2-1 實驗藥品 ................................................................................. 50 3-2-2 實驗儀器設備 ......................................................................... 51 3-3 實驗方法與步驟 ............................................................................ 53 3-3-1 樣品製備 ................................................................................. 53 3-3-2 光催化活性測試 ..................................................................... 54 3-4 分析儀器 ........................................................................................ 58 第四章 結果與討論 ................................................................................ 62 4-1 改質方法的選用 ............................................................................ 62 4-2 實驗製程參數對銀碳共改質二氧化鈦之影響 ............................ 65 4-2-1 碳摻雜量之效應 ..................................................................... 65 4-2-2 鍛燒溫度之效應 ..................................................................... 85 4-2-3 碳前驅物種類之影響 ........................................................... 104 4-2-4 銀含量之效應 ....................................................................... 121 4-3 銀離子與硝酸離子對銀碳共改質二氧化鈦之效應 .................. 138 4-4 銀碳共改質二氧化鈦與單一改質二氧化鈦之比較 .................. 156 4-5 觸媒穩定性之測試 ...................................................................... 176 第五章 結論與未來展望 ...................................................................... 179 5-1 結論 .............................................................................................. 179 5-2 未來展望 ...................................................................................... 183 第六章 參考文獻 .................................................................................. 185

[1] 藤嶋昭、橋本和仁、渡部俊也、吳紀聖,圖解光觸媒,世茂出版有限公司:五南圖書出版公司,2006
[2] A. Kudo, Y. Miseki, “Heterogeneous Photocatalyst Materials for Water Splitting.” Chemical Society Reviews, vol. 38, pp. 253-278, 2009
[3] A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode.” Nature, vol. 238, pp. 37-37, 1972
[4] 薛明軒,「鉑改質光觸媒二氧化鈦之紫外光與可見光應答光催化活性」,碩士論文,國立台灣科技大學化學工程系,2011
[5] 高濂、鄭珊、張青紅、陳憲偉,奈米光觸媒,五南圖書出版公司,2004
[6] 曾堯宣、黃嘉宏、黃珧玲、劉淑鈴,「奈米光觸媒環境應用原理與實例」,工業技術研究院能源與環境研究所,化工技術April,2006
[7] 林有銘,「功能性粉末奈米光觸媒」,科學發展408期,2006
[8] O. Carp, C. L. Huisman, “Photoinduced Reactivity of Titanium Dioxide.” Progress in Solid State Chemsitry, vol. 32, pp. 33-177, 2004
[9] A. Sclafani, J. M. Herrmann, “Comparison of the Photoelectronic and Photocatalytic Activity of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions.” The Journal of Physical Chemistry, vol. 100, pp. 13655-13661, 1996
[10] A. Sclafani, L. Palmisano, M. Schiavello, “Influence of the Preparation Methods of Titanium Dioxide on the Photocatalytic Degradation of Phenol in Aqueous Dispersion.” The Journal of Physical Chemistry, vol. 94, pp. 829-832, 1990
[11] 郭建宏,「碳改質二氧化鈦及其可見光應答催化活性之研究」,碩士論文,國立台灣科技大學化學工程系,2010
[12] Y. Huang, W. Ho, S. Lee, L. Zhang, G. Li, J. C. Yu, “Effect of Carbon Doping on the Mesoporous Structure of Nanocrystalline Titanium Dioxide and Its Solar-Light-Driven Photocatalytic Degradation of NOx.” Langmuir, vol. 24, pp. 3510-3516, 2008
[13] S. Shanmugam, A. Gabashvili, D. S. Jacob, J. C. Yu, A. Gedanken, “Synthesis and Characterization of TiO2@C Core-Shell Composite Nanoparticles and Evaluation of Their Photocatalytic Activities.” Chemistry of Materials, vol. 18, pp. 2275-2282, 2006
[14] Q. Xiao, L. Ouyang, “Photocatalytic Activity and Hydroxyl Radical Formation of Carbon-Doped TiO2 Nanocrystalline: Effect of Calcination Temperature.”, Chemical Engineering Journal, vol. 148, pp. 248-253, 2009
[15] J. Zhong, F. Cheng, J. Zhang, “Carbon-Deposited TiO2: Synthesis, Characterization, and Visible Photocatalytic Performance.”, The Journal of Physical Chemistry C, vol. 114, pp. 933-939, 2010
[16] D. Wang, L. Xiao, Q. Luo, X. Li, J. An, Y. Duan, “Highly Efficient Visible Light TiO2 Photocatalyst Prepared by Sol–Gel Method at Temperatures Lower than 300 ◦C.”, Journal of Hazardous Materials, vol. 192, pp. 150-159, 2011
[17] B. Xin, L. Jing, Z. Ren, B. Wang, H. Fu, “Effects of Simultaneously Doped and Deposited Ag on the Photocatalytic Activity and Surface States of TiO2.”, Journal of Physical Chemistry B, vol. 109, pp. 2805-2809, 2005
[18] H. M. Sung-Suh, J. R. Chio, H. J. Hah, S. M. Koo, Y. C. Bae, “Comparison of Ag Deposition Effects on the Photocatalytic Activity of Nanoparticulate TiO2 under Visible and UV Light Irradiation.”, Journal of Photochemistry and Photobiology A: Chemistry, vol. 163, pp. 37-44, 2004
[19] K. Koci, K. Mateju, L. Obalova, S. Krejcikova, Z. Lacny, D. Placha, L. Capek, “Effect of Silver Doping on the TiO2 for Photocatalytic Reduction of CO2.”, Applied Catalysis B: Environmental, vol. 96, pp. 239-244, 2010
[20] N. T. Nolan, M. K. Seery, S. J. Hinder, L. F. Healy, S. C. Pillai, “A Systematic Study of the Effect of Silver on the Chelation of Formic Acid to a Titanium Precursor and the Resulting Effect on the Anatase to Rutile Transformation of TiO2.”, Journal of Physical Chemistry C, vol. 114, pp. 13026-13034, 2010
[21] G. L. Chiarello, M. H. Aguirre, E. Selli, “Hydrogen Production by Photocatalytic Steam Reforming of Methanol on Noble Metal-Modified TiO2.”, Journal of Catalysis, vol. 273, pp. 182-190, 2010
[22] F. Zhang, R. Jin, J. Chen, C. Shao, W. Gao, L. Li, N. Guan, “High Photocatalytic Activity and Selectivity for Nitrogen in Nitrate Reduction on Ag/TiO2 Catalyst with Fine Silver Clusters.”, Journal of Catalysis, vol. 232, pp. 424-431, 2005
[23] J. Li, J. Xu, W. L. Dai, K. Fan, “Dependence of Ag Deposition Methods on the Photocatalytic Activity and Surface State of TiO2 with Twistlike Helix Structure.”, Journal of Physical Chemistry C, vol. 113, pp. 8343-8349, 2009
[24] T. Sano, N. Negishi, D. Mas, K. Takeichi, “Photocatalytic Decomposition of N2O on Highly Dispersed Ag+ Ions on TiO2 Prepared by Photodeposition.”, Journal of Catalysis, vol. 194, pp. 71-79, 2000
[25] X. Li, X. Zou, Z. Qu, Q. Zhao, L. Wang, “Photocatalytic Degradation of Gaseous Toluene over Ag-Doping TiO2 Nanotube Powder Prepared by Anodization Coupled with Impregnation Method.”, Chemosphere, vol. 83, pp. 674-679, 2011
[26] J. Yu, G. Dai, B. Huang, “Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 Nanotube Arrays.”, Journal of Physical Chemistry C, vol. 113, pp. 16394-16401, 2009
[27] Q. Sun, Y. Xu, “Evaluating Intrinsic Photocatalytic Activities of Anatase and Rutile TiO2 for Organic Degradation in Water.”, Journal of Physical Chemistry C, vol. 114, pp. 18911-18918, 2010
[28] L. Sun, J. Li, C. Wang, S. Li, Y. Lai, H. Chen, C. Lin, “Ultrasound Aided Photochemical Synthesis of Ag Loaded TiO2 Nanotube Arrays to Enhance Photocatalytic Activity.”, Journal of Hazardous Materials, vol. 171, pp. 1045-1050, 2009
[29] Y. Liu, J. Hu, J. Li, “Synthesis and Photoactivity of the Highly Efficient Ag Species/TiO2 Nanoflakes Photocatalysts.”, Journal of Alloys and Compounds, vol. 509, pp. 5152-5158, 2011
[30] H. Wang, J. Niu, X. Long, Y. He, “Sonophotocatalytic Degradation of Methyl Orange by Nano-Sized Ag/TiO2 Particles in Aqueous Solutions.”, Ultrasonics Sonochemistry, vol. 15, pp. 386-392, 2008
[31] J. Yu, J. Xiong, B. Cheng, S. Liu, “Fabrication and Characterization of Ag–TiO2 Multiphase Nanocomposite Thin Films with Enhanced Photocatalytic Activity.”, Applied Catalysis B: Environmental, vol. 60, pp. 211-221, 2005
[32] S. X. Liu, Z. P. Qu, X. W. Han, C. L. Sun, “A Mechanism for Enhanced Photocatalytic Activity of Silver-Loaded Titanium Dioxide.”, Catalysis Today, vol. 93-95, pp. 877-884, 2004
[33] L. Yang, X. Jiang, W. Ruan, J. Yang, B. Zhao, W. Xu, J. R. Lombardi, “Charge-Transfer-Induced Surface-Enhanced Raman Scattering on Ag-TiO2 Nanocomposites.”, Journal of Physical Chemistry C, vol. 113, pp. 16226-16231, 2009
[34] S. Saha, J. M. Wang, A. Pal, “Nano Silver Impregnation on Commercial TiO2 and a Comparative Photocatalytic Account to Degrade Malachite Green.”, Separation and Purification Technology, vol. 89, pp. 147-159, 2012
[35] B. Tryba, A. W. Morawski, M. Inagaki, M. Toyoda, “Effect of the Carbon Coating in Fe–C–TiO2 Photocatalyst on Phenol Decomposition under UV Irradiation via Photo-Fenton Process.”, Chemosphere, vol. 64, pp. 1225-1232, 2006
[36] W. C. Oh, F. J. Zhang, M. L. Chen, Y. M. Lee, W. B. Ko, “Characterization and Relative Photonic Efficiencies of a New Fe-ACF/TiO2 Composite Photocatalysts Designed for Organic Dye Decomposition.”, Journal of Industrial and Engineering Chemistry, vol. 15, pp. 190-195, 2009
[37] B. Tryba, M. Piszcz, B. Grzmil, A. P. Janczyk, A. W. Morawski, “Photodecomposition of Dyes on Fe-C-TiO2 Photocatalysts under UV Radiation Supported by Photo-Fenton Process.”, Journal of Hazardous Materials, vol. 162, pp. 111-119, 2009
[38] D. B. Hamal, K. J. Klabunde, “Synthesis, Characterization, and Visible Light Activity of New Nanoparticle Photocatalysts Based on Silver, Carbon, and Sulfur-Doped TiO2.”, Journal of Colloid and Interface Science, vol. 311, pp. 514-522, 2007
[39] D. B. Hamal, J. A. Haggstrom, G. L. Marchin, M. A. Ikenberry, K. Hohn, K. J. Klabunde, “A Multifunctional Biocide/Sporocide and Photocatalyst Based on Titanium Dioxide (TiO2) Codoped with Silver, Carbon, and Sulfur.”, Langmuir, vol. 26(4), pp. 2805-2810, 2010
[40] Y. F. Li, D. Xu, J. I. Oh, W. Shen, X. Li, Y. Yu, “Mechanistic Study of Codoped Titania with Nonmetal and Metal Ions: A Case of C + Mo Codoped TiO2.”, ACS. Catalyst, vol. 2, pp. 391-398, 2012
[41] H. Liu, Y. Wu, J. Zhang, “A New Approach toward Carbon-Modified Vanadium-Doped Titanium Dioxide Photocatalysts.”, ACS. Applied Materials and Interfaces, vol. 3, pp. 1757-1764, 2011
[42] A. T. Kuvarega, R. W. M. Krause, B. B. Mamba, “Nitrogen/Palladium-Codoped TiO2 for Efficient Visible Light Photocatalytic Dye Degradation.”, Journal of Physical Chemistry C, vol. 115, pp. 22110-22120, 2011
[43] X. Lin, F. Rong, D. Fu, C. Yuan, “Enhanced Photocatalytic Activity of Fluorine Doped TiO2 by Loaded with Ag for Degradation of Organic Pollutants.”, Powder Technology, vol. 219, pp. 173-178, 2012
[44] P. Wu, R. Xie, K. Imlay, J. K. Shang, “Visible-Light-Induced Bactericidal Activity of Titanium Dioxide Codoped with Nitrogen and Silver.”, Environmental Science and Technology, vol. 44, pp. 6992-6997, 2010
[45] L. H. Huang, C. Sun, Y. L. Liu, “Pt/N-codoped TiO2 Nanotubes and Its Photocatalytic Activity under Visible Light.”, Applied Surface Science, vol. 253, pp. 7029-7035, 2007
[46] 蕭宇呈,「碳改質二氧化鈦薄膜及其可見光催化活性之研究」,碩士論文,國立台灣科技大學化學工程系,2011
[47] Y. H. Tseng, C. H. Kuo, “Photocatalytic Degradation of Dye and NOx Using Visible-Light-Responsive Carbon-Containing TiO2.”, Catalysis Today, vol. 174, pp. 114-120, 2011

無法下載圖示 全文公開日期 2017/07/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE