簡易檢索 / 詳目顯示

研究生: 黃至偉
Chih-Wei Huang
論文名稱: 壓電陶瓷雙晶片於雙邊固定邊界之能量擷取及雷射都卜勒自動化陣列式量測模組
Energy Harvester of Piezoceramic Bimorph for Two-Edge fixed Boundary Condition and Mechatronic Measuring System of Laser Doppler Vibrometer
指導教授: 黃育熙
Yu-Hsi Huang
口試委員: 趙振綱
Ching-Kong Chao
林紀穎
Chi-Ying Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 199
中文關鍵詞: 壓電陶瓷雙晶片共振頻率振動模態電子斑點干涉術阻抗分析儀雷射都卜勒振動儀有限元素法三維耦合振動
外文關鍵詞: piezoceramic bimorph, LDV, mode shape, energy harvester.
相關次數: 點閱:286下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討壓電陶瓷雙晶片於雙邊固定的邊界條件下,逆壓電效應和正壓電效應之振動特性,並且以多種不同的實驗技術搭配有限元素法的數值計算結果相互驗證不同極化方向堆疊及電極連接模式,產生不同的三維振動耦合特性及其激發電能的效果。本研究採用動態量測的實驗技術包含全域式的電子斑點干涉術(Electronic Speckle Pattern Interferometry)可同時針對壓電材料的面內與面外次微米振動的模態振形與共振頻率進行即時量測,並記錄激振電壓可評估三維振動效率;單點式面外量測的雷射都卜勒振動儀(Laser Doppler Vibrometer)能進行面外振動穩態掃頻位移量測,然而因為電子斑點干涉術僅能量測次微米振動位移故本研究整合雷射都卜勒振動儀自行開發的陣列式自動化量測模組,進行奈米至厘米範圍之面外振動多點振動位移量測程式化模組化可產生全域振形分佈;另有量測電性共振特性的阻抗分析儀(Impedance Analyzer)可藉由量測壓電材料的電性阻抗獲得物體面內橫向伸展模態之共振頻率,並將實驗量測的結果與有限元素法(Finite Element Method,FEM)進行比較,FEM使用商用有限元素分析軟體ABAQUS輸入壓電材料的尺寸與材料常數進行共振頻率、振動模態的數值計算分析。本研究成果呈現壓電材料的三維動態特性於實驗量測與數值計算有相當的一致性,並且能利用有限元素法的頻率分析與穩態分析方法來預測不同極化方向堆疊及電極連接模式下,壓電材料在最佳機電耦合模式的振動頻率及其振形來設計壓電能量擷取系統之振動單元,本研究亦開發應用有限元素法套裝軟體之最佳化分析方法,可計算生活中不同頻率振動源最佳發電效率之壓電材料尺寸設計。本論文成果在學術研究領域或工業界的實際應用皆有所貢獻,提供了壓電材料完整的振動資訊並可應用於能量擷取系統的振動特性評估。


    The energy harvesting systems of piezoelectric material are investigated in this project. The piezoceramic bimorphs are used to perform the vibration characteristics by experimental measurements and finite element method (FEM). The dynamic characteristics and the electromechanical coupling efficiency of the piezoelectric energy harvesting system are studied by electrical connections and different polarizations using on four kinds of piezceramic bimorphs. Several experimental techniques are used to measure the dynamic characteristics of piezoelectric materials. First, the full-filed optical technique, amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI), can measure simultaneously the resonant frequencies and mode shapes for out-of-plane and in-plane vibrations. Second, the pointwise measurement system, laser Doppler vibrometer (LDV), can obtain resonant frequencies by dynamic signal swept-sine analysis. We build the LDV system as the array measurement in mechatronics and reconstructed the mode shape in comparison with AF-ESPI measurements. Third, the correspondent in-plane resonant frequencies and anti-resonant frequencies are obtained by impedance analysis. The experimental results of vibration characteristics are verified with FEM calculations. After the dynamic characteristics of piezceramic bimorphs on two-end clamped boundary conditions are analyzed in converse piezoelectric effect, the piezceramic bimorphs were excited by shaker to measure their resonant frequencies and mode shapes. The electric voltages generated using shaker push-pull piezoelectric energy harvesters were determined at the same time. In conclusion, the best designs in output electric voltage were proposed to the different polarizations of piezceramic bimorphs in different connections. The vibration characteristics of piezoelectric materials have excellent consistence determined by experimental measurements and FEM in direct and converse piezoelectric effects.

    摘要 IV Abstract V 誌謝 VII 符號索引 VIII 目錄 X 圖目錄 XII 表目錄 XIX 第一章 緒論 1 1.1 研究動機 1 1.2文獻回顧 3 1.3論文內容簡介 8 第二章 實驗原理與架設方式 11 2.1電子斑點干涉術 11 2.1.1面外振動量測 13 2.1.2面內振動量測 16 2.2雷射都卜勒振動儀 17 2.3阻抗分析儀 20 2.4振動器 24 2.5整流電路 24 2.6低雜訊電壓前置放大器 28 第三章 壓電材料相關理論 29 3.1壓電基本理論 29 3.2壓電材料常數轉換 32 3.3壓電平板介紹與邊界條件設定 34 3.3.1單層壓電陶瓷平板理論解析 34 3.3.2壓電陶瓷雙晶片簡介 36 3.3.3壓電陶瓷雙晶片理論方程組 40 第四章 壓電雙晶片之逆壓電效應 42 4.1實驗方法與量測步驟 42 4.2數值分析 47 4.3數值分析比較 51 4.4實驗量測與數值計算結果比較 54 4.5討論 90 4.6自動化陣列式量測模組 102 第五章 壓電雙晶片之機械推動振動特性 109 5.1實驗方法與量測步驟 109 5.2實驗量測與數值計算結果比較 112 5.3討論 144 第六章 壓電雙晶片應用正壓電效應於能量擷取系統 149 6.1實驗量測與數值計算結果比較 149 6.2結論 175 6.3 程式模組化壓電能量擷取系統設計方法 180 第七章 結論與未來展望 183 7.1結論 183 7.2未來展望 185 參考文獻 186 附錄 191 A. 振動器(DP-Shaker)規格 191 B. 程式模組化程式碼 194 C. SR560低雜訊電壓前置放大器 196

    [1] 連益慶,舒貽忠,「陣列式壓電振動能量擷取系統在不同介面電路下之動態特性分析研究」,國立台灣大學應用力學研究所博士論文,2012年。
    [2] Heywang W., Lubitz K. and Wersing W., Piezoelectricity-evolution and future of a technology. Springer, 2008.
    [3] “陶瓷技術手冊” ,經濟部技術處發行,中華民國產業科技發展協會與中華民國粉末冶金協會出版(1994/07)
    [4] Lloyd, P. and Redwood, M., “Finite-difference method for the investigation of the vibrations of solids and the equivalent-circuit characteristics of piezoelectric resonators, Parts I and II,” J. Acoust. Soc. Am. Vol. 39, pp. 346-361, 1966.
    [5] Tiersten, H.F., Linear Piezoelectric Plate Vibrations. New York: Plenum, 1969.
    [6] IEEE standard on piezoelectricity. IEEE Ultrasonics Ferroelectrics and Frequency Control Society, ANSI/IEEE Std 176-1987.
    [7] Tzou H.S., Piezoelectric shells: distributed sensing and control of continua. Kluwer Academic Publishers, 1993.
    [8] Heywang, W., Lubitz, K. and Wersing, W., Piezoelectricity-evolution and future of a technology. Springer, 2008.
    [9] Butters, J.N. and Leendertz, J.A.,“Speckle pattern and holographic techniques in engineering metrology,” Optics and Laser Technology, 3(1), 1971, pp. 26-30.
    [10] Hgmoen K. and Lkberg O.J., “Detection and measurement of small vibrations using electronic speckle pattern interferometry,” Applied Optics, 16(7), 1977, pp. 1869-1875.
    [11] Wykes C., “Use of electronic speckle pattern interferometry (ESPI) in the measurement of static and dynamic surface displacements,” Optical Engineering, 21, 1982, pp. 400-406.
    [12] Nakadate S., Saito H. and Nakajima T., “Vibration measurement using phase-shifting stroboscopic holographic interferometry,” Journal of Modern Optics, 33(10), 1986, pp. 1295-1309.
    [13] Wang W.C., Hwang C.H. and Lin S.Y., “Vibration measurement by the time-averaged electronic speckle pattern interferometry methods,” Applied Optics, 35(22), 1996, pp. 4502-4509.
    [14] Ma C.C. and Huang C.H., “Experimental and numerical analysis of vibrating cracked plates at resonant frequencies,” Experimental Mechanics, 41(1), 2001, pp. 8-18.
    [15] Ma C.C. and Huang C.H., “Experimental full field investigations of resonant vibrations for piezoceramic plates by an optical interferometry method,” Experimental Mechanics, 42(2), 2002, pp. 140-146.
    [16] 黃育熙,馬劍清,「壓電陶瓷平板、薄殼、與雙晶片三維耦合動態特性之實驗量測、數值計算、與理論解析」,國立台灣大學機械工程研究所博士論文,2009年。
    [17] Ma C.C., Lin H.Y., Lin Y.C. and Huang Y.H.,“Experimental and numerical investigations on resonant characteristics of a single-layer piezoceramic plate and a cross-ply piezolaminates composite plate,” Journal of the Acoustical Society of America, 119(3), 2006, pp. 1476-1486.
    [18] Cady W.G., Piezoelectricity. McGraw-Hill Book Co. Inc., New York, 1946.
    [19] Mason W.P., Piezoelectric crystals and their application to ultrasonics. New York: Van Nostrand, 1950.
    [20] Henry A.S., Daniel J.I. and Gyuhae P., “Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries,” Journal of Intelligent Material Systems and Structures, 2005.
    [21] Anton S.R. and Sodano H.A., “A review of power harvesting using piezoelectric materials (2003-2006)” , Smart Materials and Structures, vol. 16, No. 3, 2007.
    [22] Hibbeler, R.C., Mechanics of materials. 3rd edition, Prentice Hall Press, 1997.
    [23] Cook-Chennaul K.A.,Thambi N,Bitetto M.A and Hameyie E.B., “Piezoelectric Energy Harvesting A Green and Clean Alternative for Sustained Power Production,” Bulletin of Science Technology & Society, 2008.
    [24] Liang, J. and Liao, W.H., “Energy Harvesting and Dissipation with Piezoelectric Materials”, IEEE International Conference on Information and Automation, pp. 446-451, June 20 -23, 2008.
    [25] Howells C.A., “Piezoelectric energy harvesting,” Energy Conversion and Management, 50, 2009.
    [26] Carlos D.M.J., Alper E, Daniel J.I., “An electromechanical finite element model for piezoelectric energy harvester plates”, Journal of Sound and Vibration, pp. 9–25, 2009.
    [27] Ahmad R., Hashim M.H., “Development of Energy Harvesting Device using Piezoelectric Material”, IEEE, 2011.
    [28] 連益慶,舒貽忠,「壓電振動能量擷取系統介紹」,工業材料雜誌263期,2008年。
    [29] Liang J.,Liao W.H, “Improved Design and Analysis of Self-Powered
    Synchronized Switch Interface Circuit for Piezoelectric Energy Harvesting Systems”, IEEE, 2012.
    [30] Wang S.Y., “A finite element model for the static and dynamic analysis of a piezoelectric bimorph,” International Journal of Solids and Structures, 41, 2004, pp. 4075-4096.
    [31] Ma C.C., Lin Y.C., Huang Y.H. and Lin H.Y.,“Experimental measurement and numerical analysis on resonant characteristics of cantilever plates for piezoceramic bimorphs,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54(2) , 2007, pp. 227-239.
    [32] 林憲陽,馬劍清,「壓電陶瓷複合層板動態特性之數值分析與實驗量測」,國立台灣大學機械工程研究所博士論文,2002年6月。
    [33] 黃吉宏,馬劍清,「應用電子斑點干涉術探討三維壓電材料體及含裂紋板的振動問題」,國立台灣大學機械工程研究所博士論文,1998年6月。
    [34] PhotonicsEncyclopedia, R., Acousto-optic Modulators.
    http://www.rp-photonics.com/acousto_optic_modulators.html.
    [35] Polytec, PDV-100 Vibrometer Education Kit.
    [36] Zhou Y.S. and Tiersten H.F., “On the normal acceleration sensitivity of contoured quartz resonators with the mode shape displaced with respect to rectangular supports,” Journal of Applied Physics, 69(5), 1991, pp. 2862-2870.
    [37] Royer D., Dieulesaint E. and LyleElastic S.N., Waves in Solids: Generation, acousto-optic interaction, applications, Springer, 2000.
    [38] Andrushchenko V.A., Vovkodav I.F., Karlash V.L. and Ulitko A.F., “Coefficient of electromechanical coupling in piezoceramic disks,” International Applied Mechanics, 11(4), 1975, pp. 377-382.
    [39] Zhang S., Alberta E.F., Eitel R.E., Randall C.A. and Shrout T.R., “elastic, piezoelectric, and dielectric characterization of modified BiScO3-PbTiO3 ceramics,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52(11), 2005, pp. 2131-2139.
    [40] 曾國舜,”壓電纖維複材與壓電陶瓷雙晶片的動態特性及應用於能量擷取系統之探討”,國立台灣大學工學院機械工程學系碩士論文,中華民國101年7月。
    [41] 周宛婷,”電極設計方法應用於壓電陶瓷平板與雙晶片提升振動能量擷取系統效能研究”,國立台灣科技大學機械工程學系碩士論文,中華民國102年1月。

    QR CODE