簡易檢索 / 詳目顯示

研究生: Mekuriaw assefa Kebede
Mekuriaw assefa Kebede
論文名稱: Synthesis, Characterization and Applications of Nanoparticle-Polymer Based Green Composites
Synthesis, Characterization and Applications of Nanoparticle-Polymer Based Green Composites
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 鄭國彬
Kuo-Bing Cheng
楊禎明
Jen-Ming Yang
呉昌諜
Chang-Mou Wu    
氏原真樹
Masaki Ujihara  
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 114
中文關鍵詞: Cellulose fiberTEMPO-oxidationMetal nanoparticlesPoly(amido amine) dendrimerFormaldehyde decompositionAntimicrobial activityFlexible electrodeCarbon dotDye sensitized solar cellHydroxyapatiteAgarosePoly(dimethyl acrylamide)Bone scafoldStereo lithographyMechanical strength
外文關鍵詞: Cellulose fiber, TEMPO-oxidation, Metal nanoparticles, Poly(amido amine) dendrimer, Formaldehyde decomposition, Antimicrobial activity, Flexible electrode, Carbon dot, Dye sensitized solar cell, Hydroxyapatite, Agarose, Poly(dimethyl acrylamide), Bone scafold, Stereo lithography, Mechanical strength
相關次數: 點閱:444下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要探討不同複合材料及其應用,首先利用黏膠人造纖維(viscose rayon cellulose fiber)為基底加載鉑(platinum)和銀(silver)奈米粒子其分別應用在分解甲醛氣體和抑菌材料上。其次是使用2,2,6,6-四甲基哌啶氧化纖維素奈米纖維(2,2,6,6-tetramethyl-1-piperidinyloxy radical -oxidized cellulose nanofiber, TOCNF) 為基底加載氧化鋅奈米粒子(zinc oxide nanoparticles)其應用在染料敏化太陽能電池(dye-sensitized solar cell)。最後使用丙烯酸酯(acrylate)為基底與瓊脂糖(agarose)合成一聚合物複合材料其應用在骨再生3D列印技術中。
首先黏膠人造纖維先被選擇性地氧化後引入羧酸官能基(carboxylate functional group)於其中,隨後在其表面個別分散奈米鉑和奈米銀粒子藉由第四層胺終端基的樹枝狀高分子(amine-terminated fourth generation poly(amido amine) dendrimer, PAMAM)與羧酸進行醯胺化反應(amidation reaction)。由實驗發現,含1 wt% PAMAM和2 wt% 奈米鉑粒子之黏膠人造纖維比未含有PAMAM和奈米鉑粒子的黏膠人造纖維高出84倍的吸附甲醛氣體能力且具65%分解甲醛氣體之催化效率(catalytic efficiency)。而加載0.2 wt% 奈米銀粒子之黏膠人造纖維由實驗結果顯示出對大腸桿菌(E. coli)具有優異的殺菌能力。因此,由上述結果可得知PAMAM可保護且將具功能性奈米金屬粒子有效固定於黏膠人造纖維上,並產生一具有功能性的黏膠人造纖維且有效應用在病態建築症候群(sick building syndrome) 之降解其病原體。
其次是在含有TOCNF下進行氧化鋅奈米棒(ZnO nanorod, ZnO-NR)的原位生長(in situ growth),進而製備出一具軟性導電複合薄膜。我們利用該薄膜作為染料敏化太陽能電池之電極,在其表面加載氧化鋅奈米棒和碳點(carbon dots)。由實驗結果發現,最佳加載ZnO-NP@Cdot在TOCNF/ZnO-NR薄膜上是100 mg/(g TOCNF/ZnO-NR)為最佳優化比例。氧化鋅奈米棒和碳點之最佳優化比例為1:0.4,在藍光(波長479 nm, 強度為56.2 W / m2)照射下,染料敏化太陽能電池的功率轉換效率(power conversion efficiency)為0.15±0.08%。
最後將使用羥基磷灰石-聚(二甲基丙烯酰胺)(hydroxyapatite-poly(dimethyl acrylamide), HAp-PDMAAm)複合材料藉由光固化成形法(Stereolithography)之3D列印技術製備出一骨再生模擬物(bone mimicry)。除此之外,我們也使用另一種複合材料-HAp-瓊脂糖複合材料並藉由同一技術製備出另一骨再生模擬物,進一步將這兩種骨再生模擬物進行抗拉強度(tensile strength)和其形態(morphologies)比較。由實驗結果表示出HAp: PDMAAm的重量比在0.17之HAp-PDMAAm複合xerogel其抗拉強度具有30.2 MPa,而Hap含量重量比在0.5之瓊脂糖骨複合材料其抗拉強度有26.2 MPa。由此機械強度顯示出該複合材料可應用在骨再生醫學(bone-regenerative medicine)且對病患特定部位之再生在3D bioprinting技術具有無限潛力發展。
總括本實驗結果主要集中在生產出具低成本、高穩度且環保之綠色複合奈米材料以及評估其材料於醫學、環境及能源方面的應用。因此,由本研究結果將有助於目前奈米技術發展以利提高現代人類生活水準。


Composite materials were prepared by loading platinum, silver, and zinc oxide nanoparticles on cellulose-based substrates, independently. Additionally, agarose and acrylate-based synthetic polymer were also used to prepare different composites. Hence, synthesis, characterization and respective applications of the obtained composites are the major objectives of the study.
In the first work, viscose rayon cellulose fiber was selectively oxidized so that carboxylate functional group was introduced into the fiber. Enough dispersed platinum and silver nanoparticles having an average size of around 5 nm with narrow size distribution were prepared with a capping of amine-terminated fourth generation poly(amido amine) dendrimer and they were immobilized on oxidized fibers through amidation between terminal amine groups of dendrimer and carboxylic acids on oxidized fibers. The fiber-containing dendrimer (1 wt%) and platinum (2 wt%) exhibited 84 times higher adsorption capacity for formaldehyde gas on dendrimer site than on fiber site and the catalytic efficiency (65 %) towards decomposition of formaldehyde gas adsorbed on the dendrimer site, and the silver (0.2 wt%)-loaded fiber revealed excellent biocidal activity against E. coli. Thus, it can be noted that the immobilization of functional metal nanoparticles protected by dendrimer on cellulose fibers is effective to produce efficient textile products with smart functions like the degradation of causative agents for sick building syndromes.
In the second work, an in situ growth of ZnO nanorod (ZnO-NR) was performed in the presence of 2,2,6,6-tetramethyl-1-piperidinyloxy radical (TEMPO)-oxidized cellulose nanofiber (TOCNF), and then a stable, flexible and conductive composite film was prepared. This composite film was used as a substrate for loading zinc oxide nanoparticles (ZnO-NP) and carbon dots (Cdot). The ratio of loaded ZnO-NP@Cdot on TOCNF/ZnO-NR film was optimized at 100 mg/(g TOCNF/ZnO-NR). The optimized weight ratio of ZnO-NP to Cdot ratio was 1:0.4 that provided a power conversion efficiency of 0.15±0.08 % on the dye-sensitized solar cell under the illumination of blue light (479 nm wave length) with an intensity of 56.2 W/m2.
Lastly, a bone mimicry was fabricated from hydroxyapatite-poly(dimethyl acrylamide) (HAp-PDMAAm) composite through stereolithographic 3D printing technique, and additionally, the similar material was also obtained from HAp-agarose composite by using a mold preparation technique. The two bone-regenerative products were compared each other based on their tensile strength and morphologies: The HAp-PDMAAm composite xerogel from 0.17 weight ratio of HAp content against PDMAAm can possess a tensile stress of 30.2 MPa, whereas 26.2 MPa was observed in a case of agarose bone composite of 0.5 weight ratio of HAp content. The achieved mechanical strengths indicate that the products can be applied to bone-regenerative medicine and the utilized fabrication techniques will play a significant role towards patient-specific bioprinting technologies.
In general, all the above studies were focused on the development of facile procedures for the production of cheap, stable and environmentally friendly nanomaterials based green composites and on the evaluation of their performances on desired applications for the health, environment and energy production. Thus, the as-reported research will contribute to the current nanotechnologies towards the improvement of modern human life standard.

Table of contents Contents Page Abstract .......................................................................................................................................................................i Acknowledgments................................................................................................................................................... v Table of contents......................................................................................................................................................viii List of figures, schemes, and tables.................................................................................................................. xi CHAPTER ONE: Introduction............................................................................................................................... 1 1.1. Background..................................................................................................................................................... 1 1.2. Cellulose and its composites.................................................................................................................... 7 1.2.1. Structure of cellulose................................................................................................................................ 7 1.2.2. Cellulose nanoparticles............................................................................................................................ 9 1.2.3. Cellulose-based composites.................................................................................................................10 1.3. Dendrimer molecules and their composites.......................................................................................14 1.3.1. Definition and structure of dendrimer molecules..........................................................................14 1.3.2. Dendrimer-based composites...............................................................................................................16 1.4. Dye-sensitized Solar cell..............................................................................................................................18 1.5. Objectives..........................................................................................................................................................24 CHAPTER TWO: Preparation of Platinum and Silver-loaded Viscose Rayon Fibers for Formaldehyde Decomposition and Antimicrobial Functionality............................................................27 2.1 Motivation..........................................................................................................................................................27 2.2 Experimental......................................................................................................................................................29 2.2.1 Materials and methods..............................................................................................................................29 2.2.2 TEMPO-oxidation of viscose rayon (VR) fiber...................................................................................30 2.2.3 Synthesis of nanoparticles........................................................................................................................31 2.2.4 Chemical attachment of nanoparticles on TOVR.............................................................................31 2.2.5 Detection of formaldehyde on TOVR-DenPtNPs.............................................................................32 2.2.6 Antibacterial activity test on TOVR-DenAgNPs................................................................................32 2.3 Results and Discussion...................................................................................................................................33 2.3.1 Chemical immobilization of nanoparticles on TEMPO-oxidized rayon fiber........................33 2.3.2 Formaldehyde removal/decomposition effect of TOVR-DenPtNPs........................................40 2.3.3 Antibacterial effect of TOVR-DenAgNPs............................................................................................43 2.4 Conclusions.......................................................................................................................................................44 CHAPTER THREE: Flexible film Electrode Consisting of ZnO/Cellulose Composite for Dye-Sensitized Solar Cell Application.........................................................................................................................46 3.1. Motivation.........................................................................................................................................................46 3.2. Experimental.....................................................................................................................................................47 3.2.1. Materials and methods.............................................................................................................................47 3.2.2. Synthesis of Tempo-Oxidized Cellulose Nanofiber (TOCNF)....................................................48 3.2.3. Preparation TOCNF/ZnO-NR Composite film electrode.............................................................49 3.2.4. Preparation of TOVR/ZnO-NR/ZnO-NP@Cdot composite film electrode..........................49 3.2.5. Conductivity measurement.....................................................................................................................50 3.2.6. Fabrication of dye-sensitized solar cell (DSSC)...............................................................................50 3.2.7. Photocurrent (J-V) measurement of DSSC........................................................................................51 3.3. Results and Discussion.................................................................................................................................51 3.3.1. Characterization of TOCNF/ZnO-NR and TOCNF/ZnO-NR/ZnO-NP@Cdot composite films.................................................................................................................................................................................51 3.3.2. Electrochemical measurement..............................................................................................................55 3.3.3. Photo-electrochemical measurement of fabricated DSSC solar cell......................................56 3.3.4. Effect of ZnO-NP@ Cdot coating on photo-electrochemical property of TOCNF/ZnO-NR electrode................................................................................................................................................................57 3.5. Conclusions......................................................................................................................................................60 CHAPTER FOUR: Stereolithographic and Molding Fabrications of Hydroxyapatite - Polymer Gels Applicable to Bone Regeneration Materials....................................................................................................62 4.1. Motivation.........................................................................................................................................................62 4.2. Experimental.....................................................................................................................................................64 4.2.1. Materials and Characterization..............................................................................................................64 4.2.2. Preparation of HAp − PDMAAm composite hydrogels/xerogels............................................64 4.2.3. Preparation of HAp - Agarose composite hydrogels/xerogels.................................................65 4.3. Results and discussion..................................................................................................................................66 4.3.1. HAp - PDMAAm composites................................................................................................................66 4.3.2. HAp - Agarose composites and their comparison with HAp - PDMAAm composites....71 4.4. Conclusions.......................................................................................................................................................72 CHAPTER FIVE: General Conclusions and Future Perspectives................................................................74 References.....................................................................................................................................................................77 List of Publications.....................................................................................................................................................98

References

[1] M. Auffan, J. Rose, J.-Y. Bottero, G.V. Lowry, J.-P. Jolivet, M.R. Wiesner, Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective, Nature nanotechnology 4 (2009) 634-641.
[2] K. Ariga, M. Li, G. Richards, J. Hill, Nanoarchitectonics: A Conceptual Paradigm for Design and Synthesis of Dimension-Controlled Functional Nanomaterials, Journal of Nanoscience and Nanotechnology 11 (2011) 1-13.
[3] Y. Wang, Y. Xia, Bottom-Up and Top-Down Approaches to the Synthesis of Monodispersed Spherical Colloids of Low Melting-Point Metals, Nano Letters 4 (2004) 2047-2050.
[4] R. Shinoda, T. Saito, Y. Okita, A. Isogai, Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils, Biomacromolecules 13 (2012) 842-849.
[5] J.S. Kim, E. Kuk, K.N. Yu, J.H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.Y. Hwang, Y.K. Kim, Y.S. Lee, D.H. Jeong, M.H. Cho, Antimicrobial effects of silver nanoparticles, Nanomedicine : nanotechnology, biology, and medicine 3 (2007) 95-101.
[6] J. Yan, A.M. Abdelgawad, M.E. El-Naggar, O.J. Rojas, Antibacterial activity of silver nanoparticles synthesized In-situ by solution spraying onto cellulose, Carbohydr Polym 147 (2016) 500-508.
[7] E. Taboada, R. Solanas, E. Rodríguez, R. Weissleder, A. Roig, Supercritical‐Fluid‐Assisted One‐Pot Synthesis of Biocompatible Core (γ‐Fe2O3)/Shell (SiO2) Nanoparticles as High Relaxivity T2‐Contrast Agents for Magnetic Resonance Imaging, Advanced Functional Materials 19 (2009) 2319-2324.
[8] M. Ahrén, L.a. Selegård, A. Klasson, F. Söderlind, N. Abrikossova, C. Skoglund, T.r. Bengtsson, M. Engström, P.-O. Käll, K. Uvdal, Synthesis and characterization of PEGylated Gd2O3 nanoparticles for MRI contrast enhancement, Langmuir : the ACS journal of surfaces and colloids 26 (2010) 5753-5762.
[9] B. Devadas, T. Imae, Hydrogen evolution reaction efficiency by low loading of platinum nanoparticles protected by dendrimers on carbon materials, Electrochemistry Communications 72 (2016) 135-139.
[10] A. Hauch, A. Georg, Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells, Electrochimica Acta 46 (2001) 3457-3466.
[11] W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chemical Society reviews 40 (2011) 1697-1721.
[12] C. Guan, J. Liu, Y. Wang, L. Mao, Z. Fan, Z. Shen, H. Zhang, J. Wang, Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability, ACS nano 9 (2015) 5198-5207.
[13] D. Sahu, S.-Y. Lin, J.-L. Huang, ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode, Applied Surface Science 252 (2006) 7509-7514.
[14] T. Minami, Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes, Thin Solid Films 516 (2008) 5822-5828.
[15] J.L. Au, B.Z. Yeung, M.G. Wientjes, Z. Lu, M.G. Wientjes, Delivery of cancer therapeutics to extracellular and intracellular targets: Determinants, barriers, challenges and opportunities, Advanced drug delivery reviews 97 (2016) 280-301.
[16] M. Singh, D.C. Harris-Birtill, S.R. Markar, G.B. Hanna, D.S. Elson, Application of gold nanoparticles for gastrointestinal cancer theranostics: A systematic review, Nanomedicine: Nanotechnology, Biology and Medicine 11 (2015) 2083-2098.
[17] R. Haarindraprasad, U. Hashim, S.C. Gopinath, V. Perumal, W.W. Liu, S.R. Balakrishnan, Fabrication of interdigitated high-performance zinc oxide nanowire modified electrodes for glucose sensing, Analytica chimica acta 925 (2016) 70-81.
[18] A.K. Cherian, A. Rana, S.K. Jain, Self-assembled carbohydrate-stabilized ceramic nanoparticles for the parenteral delivery of insulin, Drug development and industrial pharmacy 26 (2000) 459-463.
[19] Q. Huo, J. Liu, L.-Q. Wang, Y. Jiang, T.N. Lambert, E. Fang, A New Class of Silica Cross-Linked Micellar Core−Shell Nanoparticles, Journal of the American Chemical Society 128 (2006) 6447-6453.
[20] M. Ferraz, F. Monteiro, C. Manuel, Hydroxyapatite nanoparticles: a review of preparation methodologies, Journal of Applied Biomaterials and Biomechanics 2 (2004) 74-80.
[21] W.G. Sawyer, K.D. Freudenberg, P. Bhimaraj, L.S. Schadler, A study on the friction and wear behavior of PTFE filled with alumina nanoparticles, Wear 254 (2003) 573-580.
[22] L. Zhang, F. Gu, J. Chan, A. Wang, R. Langer, O. Farokhzad, Nanoparticles in medicine: therapeutic applications and developments, Clinical pharmacology & therapeutics 83 (2008) 761-769.
[23] I. Roy, T.Y. Ohulchanskyy, H.E. Pudavar, E.J. Bergey, A.R. Oseroff, J. Morgan, T.J. Dougherty, P.N. Prasad, Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug− carrier system for photodynamic therapy, Journal of the American Chemical Society 125 (2003) 7860-7865.
[24] G. Balasundaram, M. Sato, T.J. Webster, Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD, Biomaterials 27 (2006) 2798-2805.
[25] B. Mueller, L. Treccani, K. Rezwan, Antibacterial active open-porous hydroxyapatite/lysozyme scaffolds suitable as bone graft and depot for localised drug delivery, Journal of biomaterials applications 31 (2017) 1123-1134.
[26] A. Ronca, L. Ambrosio, D.W. Grijpma, Preparation of designed poly(D,L-lactide)/nanosized hydroxyapatite composite structures by stereolithography, Acta Biomater. 9 (2013) 5989-5996.
[27] H. Muroi, R. Hidema, J. Gong, H. Furukawa, Development of Optical 3D Gel Printer for Fabricating Free-Form Soft ^|^amp; Wet Industrial Materials and Evaluation of Printed Double-Network Gels, J. Solid Mech. Mater. Eng. 7 (2013) 163-168.
[28] Z. Tang, W. Li, X. Lin, H. Xiao, Q. Miao, L. Huang, L. Chen, H. Wu, TEMPO-Oxidized Cellulose with High Degree of Oxidation, Polymers 9 (2017) 421.
[29] A. Dufresne, Nanocellulose: a new ageless bionanomaterial, Materials Today 16 (2013) 220-227.
[30] X. Qiu, S. Hu, "Smart" Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications, Materials 6 (2013) 738-781.
[31] M. Amin, N.S. Abbas, M.A. Hussain, K.J. Edgar, M.N. Tahir, W. Tremel, M. Sher, Cellulose ether derivatives: a new platform for prodrug formation of fluoroquinolone antibiotics, Cellulose 22 (2015) 2011-2022.
[32] H. Tian, J. He, Cellulose as a scaffold for self-assembly: from basic research to real applications, Langmuir : the ACS journal of surfaces and colloids 32 (2016) 12269-12282.
[33] A.C. O'sullivan, Cellulose: the structure slowly unravels, Cellulose 4 (1997) 173-207.
[34] M.A.S. Azizi Samir, F. Alloin, A. Dufresne, Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field, Biomacromolecules 6 (2005) 612-626.
[35] D. Klemm, B. Heublein, H.P. Fink, A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material, Angew. Chem., Int. Ed. Engl. 44 (2005) 3358-3393.
[36] R.M. Brown, Cellulose structure and biosynthesis: what is in store for the 21st century?, Journal of Polymer Science Part A: Polymer Chemistry 42 (2004) 487-495.
[37] A.E. De Nooy, A.C. Besemer, H. van Bekkum, Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans, Carbohydr. Res. 269 (1995) 89-98.
[38] E. Daruwalla, G. Nabar, Acid hydrolysis of cellulose, Journal of Polymer Science Part A: Polymer Chemistry 20 (1956) 205-208.
[39] J. Araki, M. Wada, S. Kuga, T. Okano, Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose, Colloids and Surfaces A: Physicochemical and Engineering Aspects 142 (1998) 75-82.
[40] R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites, Chemical Society reviews 40 (2011) 3941-3994.
[41] T. Saito, Y. Nishiyama, J.-L. Putaux, M. Vignon, A. Isogai, Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose, Biomacromolecules 7 (2006) 1687-1691.
[42] T. Saito, M. Hirota, N. Tamura, S. Kimura, H. Fukuzumi, L. Heux, A. Isogai, Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions, Biomacromolecules 10 (2009) 1992-1996.
[43] H.A. Khalil, A. Bhat, A.I. Yusra, Green composites from sustainable cellulose nanofibrils: A review, Carbohydrate Polymers 87 (2012) 963-979.
[44] G. Siqueira, J. Bras, A. Dufresne, Cellulosic bionanocomposites: a review of preparation, properties and applications, Polymers 2 (2010) 728-765.
[45] H.P.S. Abdul Khalil, A.H. Bhat, A.F. Ireana Yusra, Green composites from sustainable cellulose nanofibrils: A review, Carbohydrate Polymers 87 (2012) 963-979.
[46] Q. Yang, Z. Shi, Z. Qi, J. Yang, J. Lao, T. Saito, C. Xiong, A. Isogai, high-performance Tempo-oxidized cellulose nanofibril/quantum dot nanocomposites, Journal of Controlled Release 259 (2017) e115-e116.
[47] A. Fiorati, G. Turco, A. Travan, E. Caneva, N. Pastori, M. Cametti, C. Punta, L. Melone, Mechanical and Drug Release Properties of Sponges from Cross-linked Cellulose Nanofibers, ChemPlusChem 82 (2017) 848-858.
[48] A. Hassanpour, S. Asghari, M.M. Lakouraj, Synthesis, characterization and antibacterial evaluation of nanofibrillated cellulose grafted by a novel quinolinium silane salt, RSC Advances 7 (2017) 23907-23916.
[49] K.J. Shah, T. Imae, Selective Gas Capture Ability of Gas-Adsorbent-Incorporated Cellulose Nanofiber Films, Biomacromolecules 17 (2016) 1653-1661.
[50] R. Ning, C.-N. Wu, M. Takeuchi, T. Saito, A. Isogai, Preparation and characterization of zinc oxide/TEMPO-oxidized cellulose nanofibril composite films, Cellulose (2017).
[51] K. Lefatshe, C.M. Muiva, L.P. Kebaabetswe, Extraction of nanocellulose and in-situ casting of ZnO/cellulose nanocomposite with enhanced photocatalytic and antibacterial activity, Carbohydr Polym 164 (2017) 301-308.
[52] L. Muthulakshmi, N. Rajini, H. Nellaiah, T. Kathiresan, M. Jawaid, A.V. Rajulu, Preparation and properties of cellulose nanocomposite films with in situ generated copper nanoparticles using Terminalia catappa leaf extract, International journal of biological macromolecules 95 (2017) 1064-1071.
[53] L.P. Liu, X.N. Yang, L. Ye, D.D. Xue, M. Liu, S.R. Jia, Y. Hou, L.Q. Chu, C. Zhong, Preparation and characterization of a photocatalytic antibacterial material: Graphene oxide/TiO2/bacterial cellulose nanocomposite, Carbohydr Polym 174 (2017) 1078-1086.
[54] L. Nie, J. Wang, J. Yu, Preparation of a Pt/TiO 2/cotton fiber composite catalyst with low air resistance for efficient formaldehyde oxidation at room temperature, RSC Advances 7 (2017) 21389-21397.
[55] N.A. Ibrahim, B.M. Eid, E.A. El-Aziz, T.M.A. Elmaaty, S.M. Ramadan, Multifunctional cellulose-containing fabrics using modified finishing formulations, RSC Advances 7 (2017) 33219-33230.
[56] G. Biliuta, S. Coseri, Magnetic cellulosic materials based on TEMPO-oxidized viscose fibers, Cellulose 23 (2016) 3407-3415.
[57] D.A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, P. Smith, A new class of polymers: starburst-dendritic macromolecules, Polymer journal 17 (1985) 117-132.
[58] M. Fischer, F. Vögtle, Dendrimers: from design to application—a progress report, Angewandte Chemie International Edition 38 (1999) 884-905.
[59] A. Bosman, H. Janssen, E. Meijer, About dendrimers: structure, physical properties, and applications, Chemical reviews 99 (1999) 1665-1688.
[60] U. Boas, J. Christensen, P.M. Heegaard, Dendrimers: design, synthesis and chemical properties, Journal of Materials Chemistry 16 (2006) 3785-3798.
[61] S. Duan, F.A. Chowdhury, T. Kai, S. Kazama, Y. Fujioka, PAMAM dendrimer composite membrane for CO 2 separation: addition of hyaluronic acid in gutter layer and application of novel hydroxyl PAMAM dendrimer, Desalination 234 (2008) 278-285.
[62] M. Zhao, R.M. Crooks, Homogeneous hydrogenation catalysis with monodisperse, dendrimer-encapsulated Pd and Pt nanoparticles, Angewandte Chemie-International Edition 38 (1999) 364-365.
[63] A. Siriviriyanun, T. Imae, Advantages of electrodes with dendrimer-protected platinum nanoparticles and carbon nanotubes for electrochemical methanol oxidation, Physical chemistry chemical physics : PCCP 15 (2013) 4921-4929.
[64] A. Siriviriyanun, T. Imae, Advantages of immobilization of Pt nanoparticles protected by dendrimers on multiwalled carbon nanotubes, Physical Chemistry Chemical Physics 14 (2012) 10622.
[65] X. Lu, T. Imae, Size-controlled in situ synthesis of metal nanoparticles on dendrimer-modified carbon nanotubes, The Journal of Physical Chemistry C 111 (2007) 2416-2420.
[66] M.E. Garcia, L.A. Baker, R.M. Crooks, Preparation and characterization of dendrimer− gold colloid nanocomposites, Analytical chemistry 71 (1999) 256-258.
[67] W. Lesniak, A.U. Bielinska, K. Sun, K.W. Janczak, X. Shi, J.R. Baker, L.P. Balogh, Silver/dendrimer nanocomposites as biomarkers: fabrication, characterization, in vitro toxicity, and intracellular detection, Nano letters 5 (2005) 2123-2130.
[68] K.N. Han, B.Y. Yu, S.-Y. Kwak, Hyperbranched poly (amidoamine)/polysulfone composite membranes for Cd (II) removal from water, Journal of membrane science 396 (2012) 83-91.
[69] B. Klaykruayat, K. Siralertmukul, K. Srikulkit, Chemical modification of chitosan with cationic hyperbranched dendritic polyamidoamine and its antimicrobial activity on cotton fabric, Carbohydrate Polymers 80 (2010) 197-207.
[70] T. Imae, T. Hirota, K. Funayama, K. Aoi, M. Okada, Binding of poly (amido amine) dendrimer to sodium hyaluronate in aqueous NaCl solution, Journal of colloid and interface science 263 (2003) 306-311.
[71] M. Grätzel, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells, Journal of Photochemistry and Photobiology A: Chemistry 164 (2004) 3-14.
[72] S.G. Hashmi, T. Moehl, J. Halme, Y. Ma, T. Saukkonen, A. Yella, F. Giordano, J.D. Decoppet, S.M. Zakeeruddin, P. Lund, A durable SWCNT/PET polymer foil based metal free counter electrode for flexible dye-sensitized solar cells, Journal of Materials Chemistry A 2 (2014) 19609-19615.
[73] Li, T. Han, L. Zhang, H. Zhang, H. Chen, Flexible transparent electrodes based on silver nanowires synthesized via a simple method, Royal Society open science 4 (2017) 170756.
[74] J. Chen, K. Li, Y. Luo, X. Guo, D. Li, M. Deng, S. Huang, Q. Meng, A flexible carbon counter electrode for dye-sensitized solar cells, Carbon 47 (2009) 2704-2708.
[75] K. Yoo, J.-Y. Kim, J.A. Lee, J.S. Kim, D.-K. Lee, K. Kim, J.Y. Kim, B. Kim, H. Kim, W.M. Kim, Completely transparent conducting oxide-free and flexible dye-sensitized solar cells fabricated on plastic substrates, ACS nano 9 (2015) 3760-3771.
[76] G.-Y. Tzou, Y.-L. Lai, Y.-K. Lai, C.-Y. Zheng, G.-H. Xu, Y.-M. Wang, S.-C. Chen, Fabrication of working and counter electrodes on plastic substrates for flexible dye-sensitized solar cells, MATEC Web of Conferences 123 (2017) 00031.
[77] T.-L. Wu, T.-H. Meen, S.-M. Chao, L.-W. Ji, L.-C. Shih, C.-H. Huang, J.-K. Tsai, T.-C. Wu, Application of ZnO micro rods on the composite photo-electrode of dye sensitized solar cells, Microsystem Technologies (2017).
[78] P. Baviskar, J. Zhang, V. Gupta, S. Chand, B. Sankapal, Nanobeads of zinc oxide with rhodamine B dye as a sensitizer for dye sensitized solar cell application, Journal of Alloys and Compounds 510 (2012) 33-37.
[79] M.A.H. Khondoker, S.Y. Yang, S.C. Mun, J. Kim, Flexible and conductive ITO electrode made on cellulose film by spin-coating, Synthetic Metals 162 (2012) 1972-1976.
[80] D. Tobjork, R. Osterbacka, Paper electronics, Adv Mater 23 (2011) 1935-1961.
[81] W. Zhang, R. Zhu, X. Liu, B. Liu, S. Ramakrishna, Facile construction of nanofibrous ZnO photoelectrode for dye-sensitized solar cell applications, Applied Physics Letters 95 (2009) 043304.
[82] E. Kaidashev, M.v. Lorenz, H. Von Wenckstern, A. Rahm, H.-C. Semmelhack, K.-H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann, High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition, Applied Physics Letters 82 (2003) 3901-3903.
[83] A. Singh, S. Chaudhary, D.K. Pandya, High conductivity indium doped ZnO films by metal target reactive co-sputtering, Acta Materialia 111 (2016) 1-9.
[84] L.-Y. Lin, M.-H. Yeh, C.-P. Lee, C.-Y. Chou, R. Vittal, K.-C. Ho, Enhanced performance of a flexible dye-sensitized solar cell with a composite semiconductor film of ZnO nanorods and ZnO nanoparticles, Electrochimica Acta 62 (2012) 341-347.
[85] C. Jiang, X. Sun, G. Lo, D. Kwong, J. Wang, Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode, Applied Physics Letters 90 (2007) 263501.
[86] P. Le Couteur, J. Burreson, Napoleon's buttons: 17 molecules that changed history, Penguin2004.
[87] K. Bredereck, F. Hermanutz, Man–made cellulosics, Rev. Prog. Color. Relat. Top. 35 (2005) 59-75.
[88] R.L. Mitchell, Viscose Processing of Cellulose, Ind. Eng. Chem. Res. 41 (1949) 2197-2201.
[89] R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites, Chem. Soc. Rev. 40 (2011) 3941-3994.
[90] N.A. Ibrahim, B.M. Eid, H. El-Batal, A novel approach for adding smart functionalities to cellulosic fabrics, Carbohydr. Polym. 87 (2012) 744-751.
[91] N. Ibrahim, B. Eid, E. El-Zairy, Antibacterial functionalization of reactive-cellulosic prints via inclusion of bioactive Neem oil/βCD complex, Carbohydr. Polym. 86 (2011) 1313-1319.
[92] Y. Gao, R. Cranston, Recent advances in antimicrobial treatments of textiles, Textile Research Journal 78 (2008) 60-72.
[93] M. Gouda, N. Ibrahim, New approach for improving antibacterial functions of cotton fabric, Journal of Industrial Textiles 37 (2008) 327-339.
[94] N. Ibrahim, A. Aly, M. Gouda, Enhancing the antibacterial properties of cotton fabric, Journal of Industrial Textiles 37 (2008) 203-212.
[95] X. Ren, L. Kou, J. Liang, S. Worley, Y.-M. Tzou, T. Huang, Antimicrobial efficacy and light stability of N-halamine siloxanes bound to cotton, CELLULOSE 15 (2008) 593-598.
[96] T. Öktem, Surface treatment of cotton fabrics with chitosan, Color Technol 119 (2003) 241-246.
[97] R. Dastjerdi, M. Montazer, A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties, Colloids and Surfaces B: Biointerfaces 79 (2010) 5-18.
[98] M. Gorensek, P. Recelj, Nanosilver Functionalized Cotton Fabric, Textile Research Journal 77 (2007) 138-141.
[99] N. Ibrahim, B. Eid, M. Hashem, R. Refai, M. El-Hossamy, Smart options for functional finishing of linen-containing fabrics, Journal of Industrial Textiles 39 (2010) 233-265.
[100] L. Balogh, D.R. Swanson, D.A. Tomalia, G.L. Hagnauer, A.T. McManus, Dendrimer−Silver Complexes and Nanocomposites as Antimicrobial Agents, Nano Letters 1 (2001) 18-21.
[101] S.S. Mahapatra, N. Karak, Silver nanoparticle in hyperbranched polyamine: Synthesis, characterization and antibacterial activity, Materials Chemistry and Physics 112 (2008) 1114-1119.
[102] F. Zhang, X. Wu, Y. Chen, H. Lin, Application of silver nanoparticles to cotton fabric as an antibacterial textile finish, Fiber Polym 10 (2009) 496-501.
[103] S. Gowri, L. Almeida, T. Amorim, N. Carneiro, A.P. Souto, M.F. Esteves, Polymer nanocomposites for multifunctional finishing of textiles-a review, Textile Research Journal 80 (2010) 1290-1306.
[104] H.E. Emam, S. Mowafi, H.M. Mashaly, M. Rehan, Production of antibacterial colored viscose fibers using in situ prepared spherical Ag nanoparticles, Carbohydr Polym 110 (2014) 148-155.
[105] J. Zheng, F. Song, X.-L. Wang, Y.-Z. Wang, In-situ synthesis, characterization and antimicrobial activity of viscose fiber loaded with silver nanoparticles, Cellulose 21 (2014) 3097-3105.
[106] T. Maneerung, S. Tokura, R. Rujiravanit, Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing, Carbohydr. Polym. 72 (2008) 43-51.
[107] S. Ravindra, Y. Murali Mohan, N. Narayana Reddy, K. Mohana Raju, Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “Green Approach”, Colloids and Surfaces A: Physicochemical and Engineering Aspects 367 (2010) 31-40.
[108] L. Budama, B.A. Çakır, Ö. Topel, N. Hoda, A new strategy for producing antibacterial textile surfaces using silver nanoparticles, Chemical Engineering Journal 228 (2013) 489-495.
[109] M.E. Ureyen, A. Dogan, A.S. Koparal, Antibacterial functionalization of cotton and polyester fabrics with a finishing agent based on silver-doped calcium phosphate powders, Textile Research Journal 82 (2012) 1731-1742.
[110] Y. Di, G. Long, H. Zhang, Q. Li, Preparation and Properties of Viscose Rayon/O-carboxymethyl Chitosan Antibacterial Fibers, Journal of Engineered Fibers and Fabrics 6 (2011) 39-43.
[111] Z. Li, X. Liu, X. Zhuang, Y. Guan, K. Yao, Manufacture and properties of chitosan/N,O-carboxymethylated chitosan/viscose rayon antibacterial fibers, Journal of Applied Polymer Science 84 (2002) 2049-2059.
[112] J. Fabrega, S.N. Luoma, C.R. Tyler, T.S. Galloway, J.R. Lead, Silver nanoparticles: behaviour and effects in the aquatic environment, Environment international 37 (2011) 517-531.
[113] J.A. Pickrell, B.V. Mokler, L.C. Griffis, C.H. Hobbs, A. Bathija, Formaldehyde release rate coefficients from selected consumer products, Environ. Sci. Technol. 17 (1983) 753-757.
[114] H. Nordman, H. Keskinen, M. Tuppurainen, Formaldehyde asthma—rare or overlooked?, J. Allergy Clin. Immunol. 75 (1985) 91-99.
[115] S. Wang, H.M. Ang, M.O. Tade, Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art, Environ. Int. 33 (2007) 694-705.
[116] A.C. De Groot, C.J. Le Coz, G.J. Lensen, M.A. Flyvholm, H.I. Maibach, P.J. Coenraads, Formaldehyde‐releasers: relationship to formaldehyde contact allergy. Formaldehyde‐releasers in clothes: durable press chemical finishes. Part 1, Contact dermatitis 62 (2010) 259-271.
[117] G.D. Nielsen, S.T. Larsen, P. Wolkoff, Re-evaluation of the WHO (2010) formaldehyde indoor air quality guideline for cancer risk assessment, Arch. Toxicol. (2016) 1-27.
[118] C.H. Lee, N. Park, G. Kim, J.-K. Jeon, Comparison of Adsorption Performance of Ammonia and Formaldehyde Gas Using Adsorbents Prepared from Water Treatment Sludge and Impregnated Activated Carbon, Appl. Chem. Eng. 27 (2016) 62-67.
[119] S. Aguado, Removal of pollutants from indoor air using zeolite membranes, J. Membr. Sci. 240 (2004) 159-166.
[120] Z. Wang, W. Wang, L. Zhang, D. Jiang, Surface oxygen vacancies on Co3O4mediated catalytic formaldehyde oxidation at room temperature, Catal. Sci. Technol. (2016).
[121] H. Huang, D.Y.C. Leung, Complete elimination of indoor formaldehyde over supported Pt catalysts with extremely low Pt content at ambient temperature, J. Catal. 280 (2011) 60-67.
[122] N. An, Q. Yu, G. Liu, S. Li, M. Jia, W. Zhang, Complete oxidation of formaldehyde at ambient temperature over supported Pt/Fe2O3 catalysts prepared by colloid-deposition method, J. Hazard. Mater. 186 (2011) 1392-1397.
[123] Z. Zhu, R.-J. Wu, The degradation of formaldehyde using a Pt@TiO2 nanoparticles in presence of visible light irradiation at room temperature, J. Taiwan Inst. Chem. Eng. 50 (2015) 276-281.
[124] N. An, W. Zhang, X. Yuan, B. Pan, G. Liu, M. Jia, W. Yan, W. Zhang, Catalytic oxidation of formaldehyde over different silica supported platinum catalysts, Chem. Eng. J. 215-216 (2013) 1-6.
[125] B.-b. Chen, X.-b. Zhu, M. Crocker, Y. Wang, C. Shi, Complete oxidation of formaldehyde at ambient temperature over γ-Al2O3 supported Au catalyst, Catal. Commun. 42 (2013) 93-97.
[126] J. Zhang, Y. Jin, C. Li, Y. Shen, L. Han, Z. Hu, X. Di, Z. Liu, Creation of three-dimensionally ordered macroporous Au/CeO2 catalysts with controlled pore sizes and their enhanced catalytic performance for formaldehyde oxidation, Appl. Catal., B 91 (2009) 11-20.
[127] D. Li, G. Yang, P. Li, J. Wang, P. Zhang, Promotion of formaldehyde oxidation over Ag catalyst by Fe doped MnOx support at room temperature, Catal. Today (2016).
[128] Z. Han, Preparation of TiO2-Coated Polyester Fiber Filter by Spray-Coating and Its Photocatalytic Degradation of Gaseous Formaldehyde, Aerosol Air Qual. Res. (2012).
[129] A. Bozzi, T. Yuranova, J. Kiwi, Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature, J. Photochem. Photobiol., A 172 (2005) 27-34.
[130] M. Yu, Z. Wang, H. Liu, S. Xie, J. Wu, H. Jiang, J. Zhang, L. Li, J. Li, Laundering durability of photocatalyzed self-cleaning cotton fabric with TiO(2) nanoparticles covalently immobilized, ACS Appl. Mater. Interfaces 5 (2013) 3697-3703.
[131] T. Yuranova, R. Mosteo, J. Bandara, D. Laub, J. Kiwi, Self-cleaning cotton textiles surfaces modified by photoactive SiO2/TiO2 coating, J. Mol. Catal. A: Chem. 244 (2006) 160-167.
[132] A. Siriviriyanun, T. Imae, Advantages of immobilization of Pt nanoparticles protected by dendrimers on multiwalled carbon nanotubes, Phys. Chem. Chem. Phys. 14 (2012) 10622-10630.
[133] A. Manna, T. Imae, K. Aoi, M. Okada, T. Yogo, Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: comparison of size between silver and gold particles, Chem. Mater. 13 (2001) 1674-1681.
[134] T. Imae, S.-i. Hamaguchi, Network of sodium hyaluronate with nano-knots junction of poly(amido amine) dendrimer, Carbohydr. Polym. 88 (2012) 352-360.
[135] B. Ramaraju, T. Imae, A.G. Destaye, Ag nanoparticle-immobilized cellulose nanofibril films for environmental conservation, Appl. Catal., A 492 (2015) 184-189.
[136] M.J. Fletcher, A colorimetric method for estimating serum triglycerides, Clin. Chim. Acta 22 (1968) 393-397.
[137] N. Mathi, J. Suresh, S. Bala, Eco-friendly one-pot synthesis and characterization of 1, 4-dihydropyridine derivatives, Int. J. Pharm. Pharm. Sci. 4 (2012) 651-654.
[138] M. Saenz, J. Alvarado, F. Pena-Pereira, S. Senra-Ferreiro, I. Lavilla, C. Bendicho, Liquid-phase microextraction with in-drop derivatization combined with microvolume fluorospectrometry for free and hydrolyzed formaldehyde determination in textile samples, Anal. Chim. Acta 687 (2011) 50-55.
[139] J.H. Jorgensen, M.J. Ferraro, Antimicrobial susceptibility testing: a review of general principles and contemporary practices, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 49 (2009) 1749-1755.
[140] R. Bendi, T. Imae, Renewable catalyst with Cu nanoparticles embedded into cellulose nano-fiber film, RSC Adv. 3 (2013) 16279.
[141] S. Coseri, G. Nistor, L. Fras, S. Strnad, V. Harabagiu, B.C. Simionescu, Mild and Selective Oxidation of Cellulose Fibers in the Presence of N-Hydroxyphthalimide, Biomacromolecules 10 (2009) 2294-2299.
[142] Y. Habibi, M.R. Vignon, Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp, Cellulose 15 (2007) 177-185.
[143] A. Isogai, T. Saito, H. Fukuzumi, TEMPO-oxidized cellulose nanofibers, Nanoscale 3 (2011) 71-85.
[144] B. Sun, C. Gu, J. Ma, B. Liang, Kinetic study on TEMPO-mediated selective oxidation of regenerated cellulose, Cellulose 12 (2005) 59-66.
[145] T. Saito, Y. Okita, T.T. Nge, J. Sugiyama, A. Isogai, TEMPO-mediated oxidation of native cellulose: Microscopic analysis of fibrous fractions in the oxidized products, Carbohydr. Polym. 65 (2006) 435-440.
[146] X. Lu, T. Imae, Size-controlled in situ synthesis of metal nanoparticles on dendrimer-modified carbon nanotubes, J. Phys. Chem. C 111 (2007) 2416-2420.
[147] T. Kondo, The assignment of IR absorption bands due to free hydroxyl groups in cellulose, Cellulose 4 (1997) 281-292.
[148] C.-F. Liu, J.-L. Ren, F. Xu, J.-J. Liu, J.-X. Sun, R.-C. Sun, Isolation and characterization of cellulose obtained from ultrasonic irradiated sugarcane bagasse, J. Agric. Food Chem. 54 (2006) 5742-5748.
[149] X.F. Sun, R.C. Sun, J. Tomkinson, M.S. Baird, Degradation of wheat straw lignin and hemicellulosic polymers by a totally chlorine-free method, Polym. Degrad. Stab. 83 (2004) 47-57.
[150] J. Lu, P. Askeland, L.T. Drzal, Surface modification of microfibrillated cellulose for epoxy composite applications, Polymer 49 (2008) 1285-1296.
[151] F.M. Gray, M.J. Smith, M.B. Silva, Identification and Characterization of Textile Fibers by Thermal Analysis, J. Chem. Educ. 88 (2011) 476-479.
[152] A. Pastor, F. Rodrıguez-Reinoso, H. Marsh, M. Martınez, Preparation of activated carbon cloths from viscous rayon. Part I. Carbonization procedures, Carbon 37 (1999) 1275-1283.
[153] F. Norton, G. Love, P. Hall, The effects of pre-oxidation of cellulose on the properties of chars for methane storage, American Chemical Society, Washington, DC (United States), 1994.
[154] Y. Kamath, S. Hornby, H.-D. Weigmann, Irreversible chemisorption of formaldehyde on cotton cellulose, Text Res J 55 (1985) 663-666.
[155] K. Funayama, T. Imae, K. Aoi, K. Tsutsumiuchi, M. Okada, M. Furusaka, M. Nagao, Small-angle neutron scattering investigations of layer-block dendrimers in aqueous solutions, J. Phys. Chem. B 107 (2003) 1532-1539.
[156] D. Kannaiyan, T. Imae, pH-dependent encapsulation of pyrene in PPI-core: PAMAM-shell dendrimers, Langmuir : the ACS journal of surfaces and colloids 25 (2009) 5282-5285.
[157] K.J. Shah, T. Imae, Selective Gas Capture Ability of Gas-Adsorbent-Incorporated Cellulose Nanofiber Films, Biomacromolecules 17 (2016) 1653-1661.
[158] M. Zhao, R.M. Crooks, Dendrimer-encapsulated Pt nano-particles: Synthesis, characterization, and applications to catalysis, Adv. Mater. 11 (1999) 217-220.
[159] Y. Fam, T. Imae, Catalytic oxidation of formaldehyde in water by calcium phosphate-based Pt composites, RSC Adv. 5 (2015) 15944-15953.
[160] A. Panáček, L. Kvítek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurova, V.K. Sharma, T.j. Nevečná, R. Zboril, Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity, The Journal of Physical Chemistry B 110 (2006) 16248-16253.
[161] I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, J. Colloid Interface Sci. 275 (2004) 177-182.
[162] C. Marambio-Jones, E.M. Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment, J. Nanopart. Res. 12 (2010) 1531-1551.
[163] S. Fujisawa, T. Ikeuchi, M. Takeuchi, T. Saito, A. Isogai, Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies, Biomacromolecules 13 (2012) 2188-2194.
[164] V.K. Varadan, S. Mun, H.-U. Ko, B.-W. Kang, J. Kim, Paper like cellulose-ZnO hybrid nanocomposite and its photoelectrical behavior, 9060 (2014) 90600S.
[165] H.U. Ko, S. Mun, S.K. Min, G.W. Kim, J. Kim, Fabrication of Cellulose ZnO Hybrid Nanocomposite and Its Strain Sensing Behavior, Materials 7 (2014) 7000-7009.
[166] S. Ye, D. Zhang, H. Liu, J. Zhou, ZnO nanocrystallites/cellulose hybrid nanofibers fabricated by electrospinning and solvothermal techniques and their photocatalytic activity, Journal of Applied Polymer Science 121 (2011) 1757-1764.
[167] S.V. Costa, P. Pingel, S. Janietz, A.F. Nogueira, Inverted organic solar cells using nanocellulose as substrate, Journal of Applied Polymer Science 133 (2016).
[168] N. Harale, A. Kamble, N. Tarwal, I. Mulla, V. Rao, J. Kim, P. Patil, Hydrothermally grown ZnO nanorods arrays for selective NO 2 gas sensing: Effect of anion generating agents, Ceramics International 42 (2016) 12807-12814.
[169] A. Prasannan, T. Imae, One-Pot Synthesis of Fluorescent Carbon Dots from Orange Waste Peels, Industrial & Engineering Chemistry Research 52 (2013) 15673-15678.
[170] M.J. Krysmann, A. Kelarakis, P. Dallas, E.P. Giannelis, Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission, J Am Chem Soc 134 (2012) 747-750.
[171] E.A.A. Júnior, F.X. Nobre, G. da Silva Sousa, L.S. Cavalcante, M.R.d.M.C. Santos, F.L. Souza, J.M.E. de Matos, Synthesis, growth mechanism, optical properties and catalytic activity of ZnO microcrystals obtained via hydrothermal processing, RSC Advances 7 (2017) 24263-24281.
[172] V.A. Yakovlev, V. Valentini, G. Mattei, An FTIR study of hexamethylenetetramine in porous silicon, physica status solidi (a) 197 (2003) 158-162.
[173] Y.-Q. Dang, S.-Z. Ren, G. Liu, J. Cai, Y. Zhang, J. Qiu, Electrochemical and Capacitive Properties of Carbon Dots/Reduced Graphene Oxide Supercapacitors, Nanomaterials 6 (2016) 212.
[174] J. Xu, L. Zhu, Z. Bai, G. Liang, L. Liu, D. Fang, W. Xu, Conductive polypyrrole–bacterial cellulose nanocomposite membranes as flexible supercapacitor electrode, Organic Electronics 14 (2013) 3331-3338.
[175] E. Sachlos, J. Czernuszka, Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds, Eur. Cells Mater. 5 (2003) 39-40.
[176] C. Cheah, C. Chua, K. Leong, S. Chua, Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: investigation and classification, Int. J. Adv. Manuf. Tech. 21 (2003) 291-301.
[177] J.W. Lee, J.Y. Kim, D.-W. Cho, Solid free-form fabrication technology and its application to bone tissue engineering, Int. J. Stem Cells 3 (2010) 85-95.
[178] T.-M. Chu, J. Halloran, S. Hollister, S. Feinberg, Hydroxyapatite implants with designed internal architecture, J. Mater. Sci.: Mater. Med. 12 (2001) 471-478.
[179] A.K. Bajpai, H. Bundela, Development of poly(acrylamide)-hydroxyapatite composites as bone substitutes: Study of mechanical and blood compatible behavior, Polym. Compos. 30 (2009) 1532-1543.
[180] J.W. Lee, G. Ahn, D.S. Kim, D.-W. Cho, Development of nano- and microscale composite 3D scaffolds using PPF/DEF-HA and micro-stereolithography, Microelectron. Eng. 86 (2009) 1465-1467.
[181] K.V. Niaza, F.S. Senatov, S.D. Kaloshkin, A.V. Maksimkin, D.I. Chukov, 3D-printed scaffolds based on PLA/HA nanocomposites for trabecular bone reconstruction, J. Phys.: Conf. Ser. 741 (2016) 012068.
[182] Kattimani, S. Kondaka, K.P. Lingamaneni, Hydroxyapatite—Past, Present, and Future in Bone Regeneration, Bone Tissue Regener. Insights (2016) 9-19.
[183] J. Suwanprateeb, F. Thammarakcharoen, N. Hobang, Enhancement of mechanical properties of 3D printed hydroxyapatite by combined low and high molecular weight polycaprolactone sequential infiltration, J. Mater. Sci.: Mater. Med. 27 (2016) 171-182.
[184] J. Roman, M.V. Cabanas, J. Pena, J.C. Doadrio, M. Vallet-Regi, An optimized beta-tricalcium phosphate and agarose scaffold fabrication technique, J. Biomed. Mater. Res., Part A 84 (2008) 99-107.
[185] S. Sánchez-Salcedo, A. Nieto, M. Vallet-Regí, Hydroxyapatite/β-tricalcium phosphate/agarose macroporous scaffolds for bone tissue engineering, Chem. Eng. J. 137 (2008) 62-71.
[186] N.T. Khanarian, N.M. Haney, R.A. Burga, H.H. Lu, A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration, Biomaterials 33 (2012) 5247-5258.
[187] K. Mitamura, T. Imae, N. Saito, O. Takai, ‘Fabrication and Structure of Alginate Gel Incorporating Gold Nanorods, J. Phys. Chem. C 112 (2008) 416-422.
[188] G. Bayramoglu, N. Kayaman-Apohan, H. Akcakaya, M. Vezir Kahraman, S. Erdem Kuruca, A. Gungor, Preparation of collagen modified photopolymers: a new type of biodegradable gel for cell growth, J. Mater. Sci.: Mater. Med. 21 (2010) 761-775.
[189] G. Turner-Walker, The mechanical properties of artificially aged bone: Probing the nature of the collagen–mineral bond, Palaeogeogr., Palaeoclimatol., Palaeoecol. 310 (2011) 17-22.
[190] J.A. Inzana, D. Olvera, S.M. Fuller, J.P. Kelly, O.A. Graeve, E.M. Schwarz, S.L. Kates, H.A. Awad, 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration, Biomaterials 35 (2014) 4026-4034.
[191] G. Calabrese, R. Giuffrida, S. Forte, L. Salvatorelli, C. Fabbi, E. Figallo, M. Gulisano, R. Parenti, G. Magro, C. Colarossi, L. Memeo, R. Gulino, Bone augmentation after ectopic implantation of a cell-free collagen-hydroxyapatite scaffold in the mouse, Sci. Rep. 6 (2016) 36399-36408.
[192] M. Zecca, A. Biffis, G. Palma, C. Corvaja, S. Lora, K. Jerabek, B. Corain, Interpenetrating organometallic polymer networks based on poly (dimethylacrylamide-co-methylenebisacrylamide): Synthesis and ISEC-ESR characterization, Macromolecules 29 (1996) 4655-4661.
[193] H.W. Kang, D.W. Cho, Development of an indirect stereolithography technology for scaffold fabrication with a wide range of biomaterial selectivity, Tissue Eng., Part C 18 (2012) 719-729.
[194] G. Takada, R. Hidema, H. Furukawa, Ultrahigh Ductile Gels Developed by Inter Cross-linking Network (ICN), J. Solid Mech. Mate. Eng. 6 (2012) 169-177.
[195] M.P. Algi, O. Okay, Highly stretchable self-healing poly(N,N-dimethylacrylamide) hydrogels, Eur. Polym. J. 59 (2014) 113-121.
[196] Y. Zuo, X. Liu, D. Wei, J. Sun, W. Xiao, H. Zhao, L. Guo, Q. Wei, H. Fan, X. Zhang, Photo-cross-linkable methacrylated gelatin and hydroxyapatite hybrid hydrogel for modularly engineering biomimetic osteon, ACS Appl. Mater. Interfaces 7 (2015) 10386-10394.
[197] T. Nonoyama, S. Wada, R. Kiyama, N. Kitamura, M.T. Mredha, X. Zhang, T. Kurokawa, T. Nakajima, Y. Takagi, K. Yasuda, J.P. Gong, Double-Network Hydrogels Strongly Bondable to Bones by Spontaneous Osteogenesis Penetration, Adv. Mater. 28 (2016) 6740-6745.
[198] T. Kumaresan, R. Gandhinathan, M. Ramu, M. Ananthasubramanian, K.B. Pradheepa, Design, analysis and fabrication of polyamide/ hydroxyapatite porous structured scaffold using selective laser sintering method for bio-medical applications, J. Mech. Sci. Technol. 30 (2016) 5305-5312.
[199] C.E. Wilson, C.A. van Blitterswijk, A.J. Verbout, W.J. Dhert, J.D. de Bruijn, Scaffolds with a standardized macro-architecture fabricated from several calcium phosphate ceramics using an indirect rapid prototyping technique, J. Mater. Sci. Mater. Med. 22 (2011) 97-105.
[200] G. Brunello, S. Sivolella, R. Meneghello, L. Ferroni, C. Gardin, A. Piattelli, B. Zavan, E. Bressan, Powder-based 3D printing for bone tissue engineering, Biotechnol. Adv. 34 (2016) 740-753.
[201] Y. Wang, J. Ma, S. Yang, J. Xu, PDMAA/Clay nanocomposite hydrogels based on two different initiations, Colloids Surf., A 390 (2011) 20-24.
[202] J.P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Double‐network hydrogels with extremely high mechanical strength, Adv. Mater. 15 (2003) 1155-1158.
[203] R. Naohara, K. Narita, T. Ikeda-Fukazawa, Change in hydrogen bonding structures of a hydrogel with dehydration, Chem. Phys. Lett. (2017) 84-88.
[204] R. Freitag, S. Vogt, M. Mödler, Thermoreactive displacers for anion exchange and hydroxyapatite displacement chromatography, Biotechnol. Prog. 15 (1999) 573-576.
[205] J. Edwards, J. Brunski, H. Higuchi, Mechanical and morphologic investigation of the tensile strength of a bone‐hydroxyapatite interface, J. Biomed. Mater. Res. 36 (1997) 454-468.
[206] R. Havaldar, S.C. Pilli, B.B. Putti, Insights into the effects of tensile and compressive loadings on human femur bone, Adv. Biomed. Res. 3 (2014) 101-106.
[207] E. Salahinejad, M.J. Hadianfard, D.D. Macdonald, M. Mozafari, D. Vashaee, L. Tayebi, Zirconium titanate thin film prepared by an aqueous particulate sol–gel spin coating process using carboxymethyl cellulose as dispersant, Mater. Lett. 88 (2012) 5-8.

QR CODE