簡易檢索 / 詳目顯示

研究生: 廖崇惇
Chung-tun Liao
論文名稱: 探討交聯劑對SBF仿生幾丁聚醣膜材的影響
The Fabrication of Biomimetic Chitosan Scaffolds by Using SBF Treatment with Different Crosslinking Agents
指導教授: 何明樺
Ming-Hua Ho
口試委員: 胡孝光
Shiaw-Guang Hu
張博鈞
Po-Chun Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 116
中文關鍵詞: 幾丁聚醣類人體體液氫氧基磷灰石交聯劑
外文關鍵詞: chitosan, SBF, hydroxyapatite, crosslinker
相關次數: 點閱:256下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 骨誘導性(Osteoinduction)為材料所需具備的一項重要的性質,在本研究中利用模擬人體體液(Simulated body fluid,SBF)來披覆仿生礦化的氫氧基磷灰石於幾丁聚醣/動物明膠支架上,期望利用此仿生礦化層來引導骨細胞生長並誘導其分化以形成新生骨。使用不同長短鏈交聯劑如:三聚磷酸鈉、戊二醛和乙二醛,交聯後的幾丁聚醣/動物明膠膜材進行仿生礦化,並探討氫氧化鈣程序的影響性,XRD、EDS、FTIR、AFM和SEM物性分析結果探討交聯劑在仿生礦化中所造成的差異性。結果顯示,TPP交聯後並浸泡氫氧化鈣7天和SBF14天的膜材有最佳氫氧基磷灰石沉積於表面,TPP交聯劑本身提供更加充足的磷酸根離子,且在礦化程序中更能誘導氫氧基磷灰石生成,使其鈣磷比和結晶性相近於人體骨骼ECM。
    將骨類細胞培養於仿生礦化後的膜材,藉此探討各個膜材的生物相容性及骨誘導性,體外細胞實驗細胞增生、細胞活性、鹼性磷酸酶的結果顯示,使用TPP交聯後並且浸泡氫氧化鈣和SBF處理後的膜材皆有較高的效果呈現,能促進較佳細胞行為、細胞生物相容性及骨誘導性。因此在未來有關生醫產業的骨再生材料特性設計和選擇上,本研究將會是值得參考的一大重點,以期能更有效的促進骨再生。


    Osteoinduction is a key issue in bone tissue engineering. In this study, the chitosan substrates was modified with the simulated body fluid(SBF)which would create a biomimetic layer on the interface between tissues and scaffolds for the bone formation. In the formation of hydroxyapatitie (HA) crystals by SBF treatment, the chitosan plays an important role as a template for the resulted biomimetic HA layer. The properties of chitosan templates are controlled by different crosslinkers, sodium tripolyphosphate (TPP), glutaraldehyde (GA) and glyoxal, before the SBF immersion. From the experimental results from XRD, EDS, FTIR and SEM analysis, the HA layer on the chitosan substrates crosslinked by TPP has the Ca/P ratio and crystallinity which are much closer to those of natural bones. These results prove that the chitosan membrane is more biomimetic by the crosslinking with TPP. It would be due to that the inter-molecular distances are controlled by these crosslinkers. Comparing with the other corsslinkers used in this research, the molecular size of TPP is more similar to the size of HA crystals in the ECM of human bones. That is to say, the resulted HA crystals are constrained in the chitosan template where the inter-space has be dominated by the TPP. Thus, a highly biomimetic layer is obtained.
    To investigate the biocompatibility and osteoinduction effects, the chitosan membranes with SBF treatment are used for the culture of osteoblastic cells in this study. The cellular activity, cell proliferation, cell morphology and alkaline phosphatase (ALPase) expression, were analyzed. The results in this research suggested that the SBF modification would improve the biocompatibility of chitosan substrates. Besides, by the crosslinking with TPP, the SBF-treated shows even higher osteoinduction effects, revealed by the increase in ALPase activity. In conclusion, the SBF process on chitosan membranes can be more efficient in the bone tissue engineering by TPP crosslinking. The excellent properties of biocompatibility and osteoinduction makes the substrates prepared in this study to be with high potential in the promotion of bone regeneration.

    摘 要 I Abstract II 致謝 IV 專 有 名 詞 及 縮 寫 VI 目 錄 XI 圖 目 錄 XVI 表 目 錄 XXI 第一章 序論 1 第二章 文獻回顧 4 2.1硬骨組織工程材料簡介與分類 4 2.1.1自然性骨材料 6 2.1.2 人工合成骨材料 7 2.2膜材材料簡介 10 2.2.1幾丁聚醣(Chitosan)及生醫領域應用 11 2.2.2 動物明膠(Galetin)及生醫領域應用 14 2.2.3 氫氧基磷灰石(Hydroxyapatite) 16 2.3類人體體液簡介(Simulated Body Fluids,SBF) 20 2.4交聯劑(crosslinker) 23 2.5骨母細胞分化標記 26 2.5.1 鹼性磷酸酶(Alkaline phosphatase) 28 第三章 實驗材料與方法 29 3.1 實驗藥品 29 3.2 實驗儀器 32 3.3 幾丁聚醣/動物明膠/氫氧基磷灰石緻密膜材製備 34 3.3.1 幾丁聚醣/動物明膠緻密膜材製備 34 3.3.2 幾丁聚醣/動物明膠/氫氧基磷灰石緻密膜材製備 35 3.4 基材特性之分析儀器 36 3.4.1掃描式電子顯微鏡觀察(SEM) 36 3.4.2紅外線光譜儀分析(FTIR-Microscopy) 36 3.4.3 X-ray繞射光譜儀分析(XRD) 36 3.4.4接觸角分析(contact angle) 37 3.4.5原子力顯微鏡分析(AFM) 37 3.5 細胞體外實驗 38 3.5.1 細胞來源 38 3.5.2 細胞培養 39 3.5.3 冷凍保存 40 3.5.4 解凍培養 40 3.5.5 細胞計數 41 3.5.6 細胞活性測試 43 3.5.7 鹼性磷酸酶(ALPase)定量分析 45 第四章 結果與討論 48 4.1經過不同交聯劑交聯後之幾丁聚醣/動物明膠膜材基本性質及分析 50 4.1.1接觸角分析材料表面特性(Contact angle) 50 4.1.2傅立葉轉換紅外線光譜分析(FTIR) 52 4.1.3 X-ray繞射光譜儀分析(XRD) 57 4.1.4原子力顯微鏡分析(AFM) 60 4.2經過SBF仿生礦化後幾丁聚醣/動物明膠膜材基本性質及分析 62 4.2.1 X-ray繞射光譜儀分析(XRD) 62 SBF處理過後分析 62 未經過Ca(OH)2處理直接浸泡SBF處理後分析 67 4.2.2傅立葉轉換紅外線光譜分析(FTIR) 70 SBF處理過後分析 70 未經過Ca(OH)2處理直接浸泡SBF處理後分析 73 4.2.3接觸角分析材料表面特性(Contact angle) 75 4.2.4掃描式電子顯微鏡觀察(SEM) 77 SBF處理過後分析 77 未經過Ca(OH)2處理直接浸泡SBF處理後分析 81 4.3幾丁聚醣/動物明膠/氫氧基磷灰石緻密膜材之細胞培養實驗 84 4-3-1 細胞於膜材表面生長型態 84 4-3-2 細胞增生 93 4-3-3 細胞粒線體活性測試 95 4-3-4 細胞鹼性磷酸酶測試 98 第五章 結論 101 參考文獻 103 附錄A. 鹼性磷酸酶 檢量線 115

    Aalto-Korte K., Makela E. A., Huttunen M., Suuronen K., Jolanki R., “Occupational contact allergy to glyoxal”, Contact Dermatitis, 2005; 52: 276-281.
    Anderson JM, ‘‘Inflammatory Response to Implants’’, ASAIO Journal , 1988; 34: 101-107.
    Bigi A., Boanini E., Panzavolta S., Roveri N., Rubini K., “Bonelike apatite growth on hydroxyapatite-gelatin sponges from simulated body fluid”, Journal of Biomedical Materials Research, 2002; 59, 4: 709-715.
    Boss JH, Biocompatibility:Review of the Concept and Its Relevance to Clinical Practice, Biomaterials and Bioengineering Handbook, edited by Wise DL et al, 2000.
    Buddy D. Ratner and Stephanie J. Bryant, ‘‘Biomaterials: Where We Have Been and Where We Are Going’’, Annu. Rev. Biomed. Eng, 2004; 6: 41-75.
    Calvo P., C. Remunan -Lopez C., Vila-Jato J. L., Alonso M. J., “Novel Hydrophilic Chitosan–Polyethylene Oxide Nanoparticles as Protein Carriers”, Journal of Applied Polymer Science, 1997; 63: 125-132.
    Chandy T, Sharma CP, “Chitosan as a biomaterial.”, Biomater Artif Cell Artif Organ, 1990; 18: 1-24.
    Chang BS, Lee CK, Hong KS, Youn HJ, Ryu HS, Chung SS, Park KW, “Osteoconduction at porous hydroxyapatite with various pore configurations”, Biomaterials, 2000; 21: 1291-1298.
    Chavan P. N., Bahir M. M., Mene R. U., Mahabole M. P., Khairnar R. S., “Study of nanobiomaterial hydroxyapatite in simulated body fluid: Formation and growth of apatite”, Materials Science and Engineering B, 2010; 168: 224-230.
    Chou YF, James CY, Dunn, Benjamin M Wu, “In Vitro Response of MC3T3-E1 Preosteoblasts within Three Dimensional Apatite-Coated PLGA Scaffolds”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2005; 75B: 81-90.
    Fakhry A., Schneider G. B., Zaharias R., Senel S., “Chitosan supports the initial attachment and spreading of osteoblasts preferentially over fibroblasts”, Biomaterials, 2004; 25: 2075-2079.
    Fang F., Yu L., Binyuan Z., Ke' ao H., “In Vitro Biomineralization of Glutaraldehyde Crosslinked Chitosan Films”, Journal of Wuhan University of Technology - Mater. Sci. Ed., 2005; 2: 20-23.
    Fereidoon Shahidi, Janak Kamil, Vidana Arachchi, You-Jin Jeon, “Food applications of chitin and chitosan”, Trends in Food Science & Technology, 1999; 10: 37-51.
    Francis Suh JK, Matthew HWT., “Application of chitosan based polysaccharide biomaterials in cartilage tissue engineering: A review”, Biomaterials, 2000; 21: 2589-2598.
    Fujimura K, Bessho K, Kusumoto K, Ogawa Y, Iizuka T, “Experimental Studies on Bone Inducing Activity of Composites of Atelopeptide Type I Collagen as a Carrier for Ectopic Osteoinduction by rhBMP-2”, Biochemical and Biophysical Research Communication, 1995; 208, 1: 316-322.
    Gisela Grandi, Claiton Heitz, Luiz Alberto dos Santos, Miguel Luciano Silva, Manoel Sant’Ana Filho, Rogerio Miranda Pagnocelli, Daniela Nascimento Silva, “Comparative Histomorphometric Analysis Between α-Tcp Cement and β-Tcp/Ha Granules in the Bone Repair of Rat Calvaria”, Materials Research, 2011; 14, 1: 11-16.
    Graziella Biagini, Aldo Bertani, Riccardo Muzzarelli, Andrea Damadei, Giovanni DiBenedetto, Antonella Belligolli, Giuseppe Riccotti, Cinzia Zucchini and Carlo Rizzoli, “Wound management with N-carboxybutyl chitosan”, Biomaterials, 1991; 12, 3: 281-286.
    Gupta K. C., Jabrail F. H., “Glutaraldehyde and glyoxal cross-linked chitosan microspheres for controlled delivery of centchroman”, Carbohydrate Res., 2006; 341: 744-756.
    Jarcho M, “Calcium phosphate ceramics as hard tissue prosthetics”, Clinical Orthopaedics and Related Research, 1981; 157: 259-278.
    Jeffrey O, Hollinger, Kam Leong, “Poly(a-hydroxy acids): carriers for bone morphogenetic proteins”, Biomaterials, 1996; 17, 2: 187-194.
    Jia Z., Shen D., Xu W., “Synthesis and antibacterial activities of quaternary ammonium salt of chitosan”, Carbohydr. Res., 2001; 333: 1-6.
    Kathuria N., Tripathi A., K Kar K., Kumar A., “Synthesis and characterization of elastic and macroporous chitosan–gelatin cryogels for tissue engineering”, Acta Biomaterialia, 2009; 5: 406-418.
    Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T, “Solutions able to reproduce in vivo surface-structure change in bioactive glass-ceramic A-W”, J Biomed Mater Res, 1990; 24: 721-34.
    Kong L., Gao Y., Cao W., Nanming Zhao Y. G., Zhang X., “Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds.” Wiley InterScience, 2005; DOI: 10.1002/jbm.a.30414.
    Kuroda S, Virdi AS, Li P, Healy KE, Sumner DR, “A low-temperature biomimetic calcium phosphate surface enhances early implant fixation in a rat model”, Inc. J Biomed Mater Res, 2004; 70A: 66-73.
    Lahiji A., Sohrabi A., Hungerford D. S., Frondoza C. G., “Chitosan supports the expression of extracellular matrixproteins in human osteoblasts and chondrocytes”, J. Biomed. Mater. Res., 2000; 51: 586-595.
    Landi E., Tampieri A., Celotti G., Sprio S., “Densification behaviour and mechanisms of synthetic hydroxyapatites”, Journal of Membrane Science, 2000; 20: 2377-2387.
    Lijun Kong, Yuan Gao, Guangyuan Lu, Yandao Gong, Nanming Zhao, Xiufang Zhang., “A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering”, European Polymer Journal, 2006; 42: 3171-3179.
    Madhumathi K., Binulal N.S., Nagahama H., Tamura H., Shalumon K.T., Selvamurugan N., Nair S.V., Jayakumar R., “Preparation and characterization of novel β-chitin-hydroxyapatite composite membranes for tissue engineering applications”, Int. J. Biol. Macromol, 2009; 44: 1-5.
    Maxian S. H., Stefano T. D., Melican M. C., Tiku M. L., Zawadsky J. P., “Bone cell behavior on MatrigelR-coated Ca/P coatings of varying crystallinities”, Journal of Biomedical Materials Research, 1998; 40: 171–179.
    Muzarelli RAA, “Biochemical significance of exogeneous chitins and chitosans in animal and patients”, Carbohydr Polym, 1993; 20: 7-16.
    Nagafusa T., Hoshino H., Sakurai T., Terakawa S., Nagano A., “Mechanical fragmentation and transportation of calcium phosphate substrate by filopodia and lamellipodia in a mature osteoclast”, Cell Biology International, 2007; 31: 1150-1159.
    Ogawa K., Yui T., Okuyam K., “Three D structures of chitosan”, International Journal of Biological Macromolecules, 2004; 34: 1-8.
    Ogino M, Ohuchi F, Hench LL, “Compositional dependence of the formation of calcium phosphate films on bioglass”, Journal of Biomedial Materials Research, 1980; 14: 55-64.
    Onishi H, Machida Y, “Biodegradation and distribution of water-soluble chitosan in mice”, Biomaterials, 1990; 20: 175.
    Peter M., Ganesh N., Selvamurugan N., Nair S.V., Furuike T., Tamura H., Jayakumar R., “Preparation and characterization of chitosan-gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications”, Carbohydrate Polymers, 2010; 80: 687-694.
    Hench L.L., “Bioceramics: from concept to clinic”, J. Am. Ceram. Soc., 1991; 74, 7: 1487-510.
    Ponticiello MS, Schinagl RM, Kadiyala S, “Gelatin-based Resorbable Sponge as a Carrier Matrix for Human Mesenchymal Stem Cells in Cartilage Regeneration Therapy”, Journal of Biomedial Materials Research, 2000; 52, 2: 246-255.
    Ravaglioli A., Krajewski A., Biasini V., Martinetti R., “Interface between hydroxyapatite and mandibular human bone tissue”, Biomaterials, 1992; 13, 3: 162-167.
    Ren D., Yi H., Wang W., Ma X., “The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation”, Carbohydrate Research, 2005; 340: 2403-2410.
    Renlong Xin, Yang Leng, Jiyong Chen, Qiyi Zhang, “A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo”, Biomaterials, 2005; 26: 6477-6486.
    Rusu V. M., Ng C.-H., Wilke M., Tiersch B., Fratzl P., Peter M. G., “Size-controlled hydroxyapatite nanoparticles as self-organized organic–inorganic composite materials” , Biomaterials, 2005; 26: 5414-5426.
    Seol Y.J., Lee J.Y., Park Y.J., Lee Y.M., Ku Y., Rhyu I.C., Lee S.J., Han S.B., Chung C.P., ‘‘Chitosan sponges as tissue engineering scaffolds for bone formation’’, Biotechnology Letters, 2004; 26: 1037-1041.
    Shapiro J.“In: Acrylic Cement in Orthopaedic Surgery.” Personal Communication to J Charneley, E & S Livingstone, Edinburgh and London, 127.
    Steinemann SG, ‘‘Corrosion of surgical implants-in vivo and in vitro tests’’, In: Winter GD, Leray JL, de Groot K, editors. Evaluation of Biomaterials., 1980; New York: Wiley, 1.
    Steinemann SG, ‘‘Corrosion of titanium and titanium alloys for surgical implants’’, Titanium’84 Science and Technology, 1985; vol. 2. Munich, Deutsche Gesellschaft Fur Metallkunde EV, 2: 1373-9.
    Struszczyk MH, “Chitin and chitosan Part II. Applications of chitosan” Polymers, 2002; 47, 6: 396-403.
    Takatsuka K., Yamamuro T., Nakamura T., Kokubo T., “Bone–bonding be- havior of titanium alloy evaluated me- chanically with detaching failure load.” J. Biomed. Mater. Res., 1995; 29:157-163.
    Tan S.C., Khor E., Tan T.K., Wong S.M., “The degree of deacetylation of chitosan: advocating the first derivative UV-spectrophotometry method of determination”, Talanta, 1998; 45: 713-719.
    Tanahashi M., Matsuda T., “Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid”, Journal of Biomedical Materials Res., 1997; 34: 305-315.
    Toth J.J., Lynch K.L., Hackbarth D.A., “Ceramic-induced osteogenesis following subcutaneous implantation of calcium phosphates”, Ducheyne P.,Christiansen O. eds., Bioceramics, 1993; Vol.6, Butterworth-Heinemann: 9-14.
    Troum S, Dalton M L Jr, “Osteogenesis in a Rat Model:Use of Bone Marrow Cells and Biodegradable Gelatin Matrix Barrier”, J South Orthop. Assoc., 2001; 10, 1: 37-43.
    Tuzlakoglu K, Reis RL, “Formation of bone-like apatite layer on chitosan fiber mesh scaffolds by a biomimetic spraying process”, J Mater Sci, 2007; 18: 1279-1286.
    Varma H. K., Yokogawa Y., Espinosa F. F., Kawamoto Y., Nishizawa K., Nagata F., Kameyama T., “Porous calcium phosphate coating over phosphorylated chitosan film by a biomimetic method”, Biomaterials, 1999; 20, 9: 879-884.
    Wang K., McDonald J., Khan A., Satsangi N., “A novel osteotropic biomaterial OG-PLG: Synthesis and in vitro release”, Wiley InterScience, 2005: 237-246.
    Yamamoto M, Ikada Y, Tabata Y, “Controlled Release of Growth Factors Based on Biodegradation of Gelatin Hydrogel”, J. Biomater. Sci. Polym., 2001; 12, 1: 77-88.
    Yamasaki H, “Heterotopic bone formation around porous hydroxyapatite ceramics in the subcutis of dogs.” Jpn. J. Oral Biol., 1990; 32: 190-192.
    Yang Q., Doub F., Liang B., Shen Q., “Studies of cross-linking reaction on chitosan fiber with glyoxal”, Carbohydrate Polymers, 2005; 59: 205-210.
    Yang X., Xu G., “The influence of xanthan on the crystallization of calcium carbonate”, Journal of Crystal Growth, 2011; 314: 231-238.
    Yaszemski MJ, Oldham JB, Lu L, Currier BL, ‘‘Bone Engineering’’, 1st edition, Em squared, Toronto, 1994: 541.
    Yousef Mohammadi, Hamid Mirzadeh, Fathollah Moztarzadeh, Masoud Soleimani, and Esmaiel Jabbari, “Osteogenic Differentiation of Mesenchymal Stem Cells on Novel Three-dimensional Poly(L-lactic acid)/Chitosan/Gelatin/β-Tricalcium Phosphate Hybrid Scaffolds”, Iranian Polymer Journal, 2007; 16, 1: 57-69.
    Zhang M., Liu C., Sun J., Zhang X., “Hydroxyapatite/diopside ceramic composites and their behaviour in simulated body fluid”, Ceramics International, 2011; 37: 2025-2029.
    Zhang W., Yu Z., Qian Q., Zhang Z., Wang X., “Improving the pervaporation performance of the glutaraldehyde crosslinked chitosan membrane by simultaneously changing its surface and bulk structure”, Journal of Membrane Science, 2010; 348: 213-223.
    Zur Nieden NI, Kempka G, Ahr HJ, “In vitro differentiation of embryonic stem cellsinto mineralized osteoblasts”, Differentiation, Jan, 2003; 71, 1: 18-27.
    王盈錦,“生物醫學材料”,合記圖書出版社,2002年。
    周士揚,“探討仿生性幾丁聚醣之骨誘導性”,國立臺灣科技大學化學工程研究所, 碩士論文,2009年。
    彭志剛,“幾丁聚醣/動物明膠/氫氧基磷灰石仿生礦化骨組織工程膜材之研究” ,國立中央大學 化學工程與材料工程研究所, 博士論文,2005年。
    張至宏, 林峰輝,“談硬骨組織工程-源源不絕的骨骼銀行”,科學發展, 356期,2000年。
    梁崇正,“明膠的溶膠-凝膠相變化與微乳液-有機凝膠相變化”,國立中央大學化學工程與材料工程研究所,碩士論文,2002年。
    謝介揚,“聚麩胺酸及幾丁聚醣複合生醫基材之製程探討、性質改良及制放應用”,國立臺灣大學化學工程研究所,博士論文,2005年。
    鄂征編,“組織培養和分子細胞學技術”,北京出版社,2001年。
    蔡漢蓉,“幾丁聚醣在水產養殖廢水處理上之應用”,國立台灣大學食品科技研究所, 碩士論文,1997年。

    無法下載圖示 全文公開日期 2016/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE