簡易檢索 / 詳目顯示

研究生: 伍泰源
Tai-yuan Wu
論文名稱: 不同冷卻方式之低碳鋼表面被覆陶瓷粉末及合金元素之耐磨耗行為研究
The Study of Alloying Elements on Wear Resistance Behavior in Low Carbon Steel Surface Clad with Ceramics Powder by Different Methods of Cooling
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 向四海
Su-Hai Hsiang
蘇裕軒
Yu-Hsuan Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 185
中文關鍵詞: 氬銲被覆空氣冷卻銅塊水冷顯微組織
外文關鍵詞: GTAW, clad, microstructure
相關次數: 點閱:121下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要為探討使用氬銲(GTAW)方式,將被覆材料分別有碳化鈦(TiC)混合固定比例的立方氮化硼(cBN)、銅粉以及氮化鋁(AlN)添加不同粉末(Ni、Co、Ti、C)三大類,分別被覆在AISI1020低碳鋼基材表面上,在各別使用空氣與銅塊水冷方式進行冷卻,最後利用各種儀器,光學顯微鏡( Optical Microscope;OM)、掃描式電子顯微鏡(Scanning Electron Microscope;SEM)、能量散步光譜儀 (Energy Dispersive Spectrometer;EDS) 、電子微探針分析儀(Electron Probe Micro-analyze; EPMA)、X-Ray 繞射分析儀(X-Ray Diffractomer;XRD)、維克式硬度試驗機分析各種被覆層顯微組織、相組成、微硬度等顯微結構;以及探討在不同冷卻方式下,對被覆層的影響效應;而磨耗試驗則使用迴轉式磨耗試驗機以銷對盤(pin-on-disc)線接觸方式進行試驗,藉此評估各種被覆層之耐磨耗性。
    研究結果顯示,銅塊水冷方式之cBN-60%TiC被覆層微硬度為HV1186,為所有試片中微硬度最高者且耐磨耗能力亦最佳,由於銅塊水冷方式,冷卻速率快,導致被覆層裡殘留較多數量的TiC與cBN粉末。分析不同冷卻方式之AlN-Ni與AlN-Co之被覆層顯微組織,雖然顯微組成相同,但隨著冷卻速率提升,導致被覆層顯微組織細化,而提高被覆層之微硬度。


    In this thesis, three types of materials are applied to clad onto AISI 1020 carbon steel by a gas tungsten arc welding (GTAW) process. Those three materials are titanium carbide (TiC) mixed with cubic boron nitride (cBN), copper powder and aluminum nitride (AlN) mixed with Ni, Co, Ti and C powders. During cladding, specimens were cooled by air or copper blocks. After cladding, an optical microscope (OM), a scanning electron microscope (SEM) with energy dispersive X-ray spectrometer (EDS), an electron probe microanalyzer (EPMA) and an X-ray diffractometer (XRD) and an micro-hardness tester were used to characterize of the clad layers with different cooling methods. Furthermore, pin-on-disc wear tests were carried out using a rotating tribometer to evaluate tribological performance of the clad layers
    The experimental results show that cBN-60%TiC with copper/water cooling exhibits a hardness of HV1186, which is the highest among the other specimens, performing the best wear resistance because of a faster cooling rate to retain residual TiC and cBN. With different cooling methods, the clad layers of AlN-Ni and AlN-Co show the same microstructure, but finer microstructure was found along with an increased cooling rate, resulting in a higher hardness.

    摘要 I ABSTRACT II .致謝 III 目錄 IV 表索引 IX 圖目錄 X 第一章 前言 1 第二章 文獻回顧 3 2-1表面被覆技術之介紹 3 2-2低碳鋼表面改質介紹 4 2-2-1低碳鋼被覆層的相關研究 4 2-3合金元素對碳鋼的影響 6 2-3-1添加合金元素之特性介紹 6 2-3-2合金元素的被覆相關研究 7 2-4惰氣鎢極電弧銲被覆(GTAW)的特點 8 2-5被覆陶瓷粉末的特性 9 2-6 熔融銲接的凝固特微與形態 14 2-6-1 顯微結構 14 2-6-2 銲道外觀形態 18 2-7被覆層強化機構 19 2-7-1細化晶粒強化 (Fine Grain Size Strengthening) 19 2-7-2固溶強化 (Solid Solution Strengthening) 19 2-7-3析出強化 (Precipitation Strengthening) 20 2-7-4 散佈強化 (Dispersion Strengthening) 20 2-7-5麻田散鐵強化 (Martensite Strengthening) 20 2-8磨耗機制 (WEAR MECHANISM) 21 2-8-1 刮磨磨耗 (Abrasive Wear) 22 2-8-2 黏著磨耗 (Adhesive Wear) 24 2-8-3 氧化磨耗 (Oxidative Wear) 24 2-8-4 表面疲勞 (Surface Fatigue) 26 第三章 實驗方法及程序 28 3-1 試片製作 30 3-1-1基材 30 3-1-2 被覆材料製備 31 3-1-3預敷熔填銲條 32 3-1-4 氬銲被覆處理 33 3-1-5磨耗實驗試片的準備 35 3-2 被覆層微硬度測試 38 3-3 被覆層顯微結構的觀察與成分分析 38 3-4 磨耗試驗 39 3-4-1 磨耗試驗機的校正 39 3-4-2磨耗試驗之條件 39 3-4-3 磨耗量之量測與計算 40 3-4-4 磨耗表面之觀察與分析 42 3-5 分析儀器及磨耗儀器介紹 43 3-5-1 分析儀器的介紹 43 3-5-2 磨耗試驗儀器的介紹 44 3-6 被覆粉末之形貌觀察 45 第四章 結果與討論 48 4-1入熱量對被覆層表面形貌之影響 48 4-2 被覆層顯微結構及成分分析 50 4-2-1 不同冷卻方式之cBN-60%TiC被覆層之顯微結構分析 51 4-2-2 空氣冷卻之Cu被覆層之顯微結構分析 61 4-2-3 不同冷卻方式之AlN-Ni被覆層之顯微結構分析 66 4-2-4 不同冷卻方式之AlN-Co被覆層之顯微結構分析 78 4-2-5 不同冷卻方式之AlN-Ti-C被覆層之顯微結構分析 88 4-3被覆層的硬度分佈 100 4-3-1 不同冷卻方式之cBN-60%TiC硬度分佈 100 4-3-2 Cu(空氣冷卻)被覆層硬度分佈 101 4-3-3 不同冷卻方式之 AlN-Ni硬度分佈 102 4-3-4 不同冷卻方式之 AlN- Co硬度分佈 103 4-3-5 不同冷卻方式之AlN-Ti-C硬度分佈 104 4-4被覆層的磨潤行為 105 4-4-1 AISI1020低碳鋼基材之耐磨耗能力評估 105 4-4-2 cBN-60%TiC(空冷)被覆層試片之耐磨耗能力評估 113 4-4-3 cBN-60%TiC(銅冷)被覆層試片之耐磨耗能力評估 121 4-4-4 Cu(空冷)被覆層試片之耐磨耗能力評估 128 4-4-5 AlN-Ni(空冷)被覆層試片之耐磨耗能力評估 135 4-4-6 AlN-Ni(銅冷)被覆層試片之耐磨耗能力評估 142 4-4-7 AlN-Co(空冷)被覆層試片之耐磨耗能力評估 149 4-4-8 AlN-Co(銅冷)被覆層試片之耐磨耗能力評估 156 4-4-9 AlN-Ti-C (空冷)被覆層試片之耐磨耗能力評估 163 4-4-10 AlN-Ti-C (銅冷)被覆層試片之耐磨耗能力評估 170 4-4-11 各種被覆層試片之耐磨耗能力評估 177 第五章 結論與建議 179 5-1結論 179 5-2未來研究方向與建議 181 參考文獻 182

    1. K. Holmberg, and A. Matthews, Coatings tribology: properties, techniques and applications in surface engineering, No. 28, 1994.
    2. I.M. Hutchings, Tribology: friction and wear of engineering materials, CRC Press, 1992.
    3. L. St-Georges, Jonqui`ere, and Qu’ebec, Development and characterization of composite Ni–Cr +WC laser cladding, Wear, Vol. 263, pp. 562-566, 2007.
    4. B. Du, Z. Zou, and X. Wang, Laser cladding of in situ TiB2/Fe composite coating on steel, Applied Surface Science, Vol. 254, pp. 6489-6494, 2008.
    5. W. Li, Q. Wu, N. Zhong, G. Wu, and H. Wang, Microstructure and wear behavior of laser cladding VC–Cr7C3 ceramic coating on steel substrate, Materials & Design, Vol. 49, pp. 10-18, 2013.
    6. W. F. Smith, Foundations of materials Science and Engineering,3E, Mc Graw Hill, 2005.
    7. X. Peng, X. Ying, J. Chen, and F.h. Wang , Effect of a small increase in the Ni content on the properties of a laser surface clad Fe-basedalloy, Applied surface science, Vol. 253, pp. 4420-4426, 2007.
    8. J. Chen, S. Zhang, J. Zhou, B. Guo, H. Zhou,and Y. Pu, Friction and wear behavior of laser cladding Ni/hBN self- lubricating composite coating , Materials Science and Engineering , A 491,pp. 47–54, 2008.
    9. 陳建州,中碳鋼表面被覆硼化物及析土元素(氧化鑭、氧化釔)之微觀結構分析與耐磨耗研究,國立台灣科技大學碩士論文,2005。
    10. 林育奇,Ti-6Al-4V合金表面被覆陶瓷粉末之微結構及磨耗行為研究,國立台灣科技大學碩士論文,2010。
    11. 柳耀鈞,球墨鑄鐵表面被覆陶瓷粉末及合金元素之耐磨耗行為研究,國立台灣科技大學碩士論文,2011。
    12. H. Stafast, J. Meinschien, F. Falk,and H. Hobert, Deposition of SiC and AlN thin films by laser ablation, Applied Surface Science, pp. 543–548, 1999.
    13. M.Zhang, Z.Zhang, M.Lu, L.Zhu, L.L.Zhu, Y.Li,and Q.Li, Orthorhombic BN: A novel superhard sp3 boron nitride allotrope, Physics Letters A, vol. 378, pp. 741-744, 2014.
    14. P. A. Molian, and L. Hualijn, Laser clading of Ti-6Al-4V with BN for improved wear performance, Wear, vol. 130, pp. 337-352, 1989.
    15. M. Keunecke, E. Wiemann, K. Weigel, S.T. Park, and K. Bewilogua, Thick c-BN coatings–Preparation, properties and application tests, Thin Solid Films, vol. 515, pp. 967-972, 2006.
    16. L. Du, C. Huang, W. Zhang, T. Li, and W. Liu, Preparation and wear performance of NiCr/Cr3C2–NiCr/hBN plasma sprayed composite coating,
    Surface and Coatings Technology, vol. 205, pp. 3722-3728, 2011.
    17. H.F. Brinson, Engineered materials handbook, Vol. 4, ASM International, Metals Park, Ohio, 1987.
    18. X.H. Wang, M. Zhang, X.M. Liu, S.Y. Qu, and Z.D. Zou, Microstructure and wear properties of TiC/FeCrBSi surface Composite coating prepared by laser cladding, China, Surface and Coatings Technology, vol. 202, pp. 3600-3606, 2008.
    19. N. Sun, H. Zhou, H. Shan, D. Chen, X. Li,W. Xia, and Luquan Ren, Friction and wear behaviors of compacted graphite iron with different biomimetic units fabricated by laser cladding, Applied Surface Science, vol. 258, pp. 7699-7706, 2012.
    20. K. Holmberg, and A. Matthews, Coatings Tribology, Elsevier, Armsterdam, Netherland, 1994.
    21. 譚安宏、簡仁德(1990),物理冶金,年代出版社。
    22. J.F. Lancaster, Metallurgy of welding, London, Chapman & Hall, 1993.
    23. A. Amirsadeghi, and M. Heydarzadeh Sohi, Comparison of the influence of molybdenum and chromium TIG surface alloying on the microstructure, hardness and wear resistance of ADI, Journal of materials Processing Technology, vol.201, pp.673-677, 2008.
    24. K.H. Zum Gahr, Microstructure and Wear of material, Tribology Series, vol.10, 1987.
    25. G.W. Stachowiak, and A.W. Batchelor, Engineering tribology, Amsterdam, Elsevier, Boston, 2005.
    26. T.F.J. Quinn, J.L. Sullivan, and D.M. Rowson, Origins and development of oxidational wear at low ambient temperatures, Wear, vol. 94, pp. 175-191, 1984.
    27. T.F.J. Quinn, and W.O. Winer, An experimental study of the “hot-spots” occurring during the oxidational wear of tool steel on sapphire, Journal of Tribology, vol. 109, pp. 315-320, 1987.
    28. M. Vardavoulias, The role of hard second phases in the mild oxidational wear mechanism of high-speed steel-based materials, Wear, vol. 173, pp. 105-114, 1994.
    29. T.F.J. Quinn, Computional methods applied to oxidational wear, Wear, vol. 199, pp. 169-180, 1996.
    30. T.F.J. Quinn, Oxidational wear modeling part Ⅲ. The effects of speed and elevated temperatures, Wear, vol. 216, pp. 262-275, 1998.
    31. H. So, The mechanism of oxidational wear, Wear, vol.184, pp. 161-167, 1995.
    32. Y.C. Lin, and Y.H. Cho, Elucidating the microstructural and tribological characteristics of NiCrAlCoCu and NiCrAlCoMo multicomponent alloy clad layers synthesized in situ, Surface & Coatings Technology, Vol. 203, pp. 1694-1701, 2009.
    33. 李明奇,製程參數對中碳鋼表面被覆SiC粉末耐磨耗性能之影響,國立台灣科技大學碩士論文,1998。
    34. N. P. Suh, The Delamination Theory of wear, Wear, vol.25, pp.111-124, 1973.
    35. C.M. Talor, Engine Tribology, Tribology Series, 26, 1993.
    36. H. Hertz, Uber die beruhrung Fester Elastischer Korper, On the Contact of elastic Solids, J. Reine and Angewandte Mathe Matik, Vol. 92, pp. 1156-171, 1881.
    37. B.J. Hamrock, and D. Dowson, Ball Bearing Lubrication the Elastohydrodynamics of Elliptical Contacts, John Willey & Sons, 1981.
    38. H. Hertz, Miscellaneous Papers by H. Hertz, Jones & Schott (eds), Macmillan, London, 1986.
    39. J. A. Williams, Engineering Tribology, Appendix 5, 1994.
    40. 王世衛,陶瓷粉末被覆於中碳鋼表面的微觀結構與磨耗行為研究,國立台灣科技大學博士論文,2003。
    41. Z. Mei, Y.W. Yan, and K. Cui, Effect of matrix composition on the microstructure of in situ synthesized TiC particulate reinforced iron-based composites, Materials Letters, vol. 57, pp. 3175-3181, 2003.
    42. 卓育賢,Ti-6Al-4V合金表面被覆陶瓷粉末之微結構及磨耗行為研究,國立台灣科技大學博士論文,2009。
    43. C.H. Chun, Experiments on the transition from the steady to the oscillatory Marangoni-convection of a floating zone under reduced gravity effect, Acta Astronautica, vol. 9, pp. 1073-1082, 1979.
    44. D.W. Zeng, In situ synthesis and characterization of Fep/Cu composite coating on SAE 1045 carbon steel by laser cladding , Materials Science and Engineering: A, vol. 344, pp. 357-364, 2003.
    45. S.F. Zhou, Investigation of Cu–Fe-based coating produced on copper alloy substrate by laser induction hybrid rapid cladding, Optics & Laser Technology, vol. 59, pp. 131-136, 2014.
    46. 白家賓,304l不鏽鋼表面被覆陶瓷粉末之為結構與磨耗行為研究,國立台灣科技大學碩士論文,2012。
    47. 李文雄,製程參數對不同合金成份被覆層微結構與磨耗行為之影響,國立台灣科技大學碩士論文,2011。

    無法下載圖示 全文公開日期 2019/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE