簡易檢索 / 詳目顯示

研究生: 陳力嘉
Li-Jia Chen
論文名稱: 鈦釕混合氧化物擔載Pt觸媒的製備與其在電化學反應特性研究
Mixed Oxide Supported Pt Catalysts for Electrochemical Characteristic Study
指導教授: 林昇佃
Shawn D. Lin
口試委員: 黃炳照
Bing-Joe Hwang
王丞浩
Chen-Hao Wang,
王冠文
Kuan-Wen Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 150
中文關鍵詞: 混合氧化物載體水熱法
外文關鍵詞: mixed oxide support, hydrothermal process
相關次數: 點閱:359下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

如今燃料電池技術日新月異,在應用端已經有相當成熟的技術,但是目前電極觸媒使用碳當作載體,然而碳載體在高電位下會有碳腐蝕問題發生,並且與白金奈米金屬粒子不具有強力的作用力(SMSI),最終將導致白金的融解,減少白金的利用率進一步導致燃料電池效率降低,本研究探討非碳載體的在陽極觸媒端運用,利用水熱法來合成雙金屬鈦釕氧化物(TixRu1-xO2) 來作探討,將探討載體經過熱處理及不同的鈦與釕合成比例的變化和結構,瞭解金屬氧化物結構對白金觸媒結構之影響,並將其應用在燃料電池陽極電催化反應上。
XRD、TEM 結果指出利用乙二醇還原法還原出來的白金粒徑大約在4到6奈米之間比商購觸媒還要略大(3.2 nm),而在電化學測試方面,而在不同比例雙金屬鈦釕氧化物(TixRu1-xO2)當載體乘載白金觸媒,以40Pt/Ti0.7Ru0.3O2和40Pt/Ti0.3Ru0.7O2 具有最佳的效果反應。


Nowadays, fuel cell technology is expected to have enormous potential for both mobile and stationary applications. The current electrode catalysts use carbon black at the support. However, the weak interactions between the carbon support and the catalytic metal nanoparticles and the corrosion of carbon eventually leads to Pt dissolution, resulting in decrease in the active surface area with long-term operation. In the study binary metal oxide (TixRu1-xO2) was synthesized by a simple hydrothermal process, a novel functionalised support for Pt.
The XRD and TEM results show that the Pt particle size of 40 wt% Pt/ TixRu1-xO2 catalyst prepared by EG method was in the range of 4-6 nm, which was slightly larger than that of commercial Pt/C and PtRu/C catalysts. The influences of CO on the electrochemical reaction The results of electrochemical analyses indicate that the prepared 40Pt/Ti0.7Ru0.3O2 and 40Pt/Ti0.3Ru0.7O2 catalysis exhibit higher intrinsic activity and better stability in the presence of CO comparing to commercial PtRu/C.

摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VIII 表目錄 XII 第一章、緒論 1 1.1 前言 1 1.2 文獻回顧 5 1.2.1 碳載體觸媒開發 6 1.2.3 金屬氧化物觸媒載體 8 1.3 研究目的與方法 15 第二章、研究設備和方法 16 2.1 藥品與儀器設備 16 2.1.1 藥品部分與氣體 16 2.1.2 儀器部分 17 2.2 觸媒製備 18 2.2.1 H2O2直接氧化法 18 2.2.2 水熱法( hydrothermal method) 19 2.2.3 乙二醇還原法 20 2.2.4 改良式乙二醇還原法 20 2.3 材料鑑定分析方法 21 2.3.1 X光繞射分析(XRD) 21 2.3.2 四點探針量測(Four point probe measurement) 22 2.3.3 表面積與孔隙度測定儀(BET) 22 2.3.4 電子穿透顯微鏡(TEM) 23 2.3.5 掃描式電子顯微鏡-能量散射光譜儀(SEM-EDX) 23 2.3.6 感應耦合電漿原子放射光譜儀(ICP-AES) 24 2.3.7 X光吸收光譜(XANES) 25 2.4 電化學分析方法 26 2.4.1 薄膜電極的製備 26 2.4.2 循環伏安法(Cyclic voltammetry) 26 2.4.3 CO電氧化分析 27 2.4.4 陽極測試條件 27 2.4.5 電化學活性表面積計算 28 2.4.6 塔弗方程式(Tafel equation) 29 2.4.7 迴歸分析最小平方法 29 第三章、結果與討論 30 3.1 H2O2直接氧化法和水熱法製備RuO2 載體 30 3.2 TixRu1-xO2氧化物載體製備 34 3.2.1 材料之晶相與型態分析 35 3.2.2 SEM-EDX和ICP-AES 材料組成分析 38 3.2.3 TixRu1-xO2氧化物載體X光吸收近邊緣結構 40 3.2.4 TixRu1-xO2氧化物載體導電度量測 48 3.2.5 金屬氧化物載體BET比表面積測定 50 3.3 40Pt /TixRu1-xO2觸媒分析 52 3.3.1 材料之晶相與型態分析 52 3.3.2 40Pt /TixRu1-xO2 觸媒TEM-EDX分析 54 3.3.3 感應耦合電漿放射光譜儀(ICP-AES)分析 57 3.3.4 40Pt/TixRu1-xO2觸媒的X光吸收近光譜分析 58 3.4 電化學特性分析結果 67 3.4.1 循環伏安法分析 67 3.4.2 金屬氧化物對Pt 氧化脫附CO 的影響 69 3.4.3 陽極測試 71 3.4.4 不同CO濃度陽極測試 81 3.5 Pt顆粒大小對觸媒影響 89 3.5.1 40Pt/TixRu1-xO2 HI之晶相與型貌分析 89 3.5.2 Pt/TixRu1-xO2 HI觸媒X光吸收近邊緣結構 92 3.6 40Pt/TixRu1-xO2HI 電化學特性分析 100 3.6.1 循環伏安法分析 100 3.6.2 HI系列陽極測試 102 3.6.3 陽極觸媒耐久度測試 118 第四章、 結論 123 第五章、 參考文獻 125 附錄一 Nafion 厚度計算 132 附錄二 40Pt/TixRu1-xO2 Ru K edge 未固定 Ru-Pt fitting結果 132 附錄三 高濃度陽極測試 134 附錄四 陽極觸媒成本考量 136 附錄五 扣除內部質傳的誤差 137

1. 李書鋒, 質子交換膜燃料電池性能之理論探討. 2004, 大葉大學.
2. Acres, G.J.K., J.C. Frost, G.A. Hards, R.J. Potter, T.R. Ralph, D. Thompsett, G.T. Burstein, and G.J. Hutchings, Electrocatalysts for fuel cells. Catalysis Today, 1997. 38(4): p. 393-400.
3. Oetjen, H.F., V.M. Schmidt, U. Stimming, and F. Trila, Performance Data of a Proton Exchange Membrane Fuel Cell Using  H 2 /  CO  as Fuel Gas. Journal of The Electrochemical Society, 1996. 143(12): p. 3838-3842.
4. 林家祥, 鉑奈米顆粒之製備與其電催化氧氣還原反應之特性探討. 2004, 元智大學.
5. Avasarala, B. and P. Haldar, On the stability of TiN-based electrocatalysts for fuel cell applications. International Journal of Hydrogen Energy, 2011. 36(6): p. 3965-3974.
6. 洪慧珊, 以旋轉圓盤電極分析燃料電池中陽極觸媒受CO毒化之影響. 2004, 元智大學.
7. Gottesfeld, S. and J. Pafford, A new approach to the problem of carbon monoxide poisoning in fuel cells operating at low temperatures. Journal of the Electrochemical Society, 1988. 135(10): p. 2651-2652.
8. Lemons, R.A., Fuel cells for transportation. Journal of Power Sources, 1990. 29(1–2): p. 251-264.
9. J.C, A., C. K.A.M, and Davis, Proc.9th Word Hydrogen Energy Conf Pairs,France, 1992. 22: p. 1541.
10. Samjeské, G., H. Wang, T. Löffler, and H. Baltruschat, CO and methanol oxidation at Pt-electrodes modified by Mo. Electrochimica Acta, 2002. 47(22-23): p. 3681-3692.
11. Götz, M. and H. Wendt, Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas. Electrochimica Acta, 1998. 43(24): p. 3637-3644.
12. Shen, P.K., K.Y. Chen, and A.C.C. Tseung, CO oxidation on Pt-Ru/WO3 electrodes. Journal of the Electrochemical Society, 1995. 142(6): p. L85-L86.
13. Papageorgopoulos, D.C., M. Keijzer, and F.A. De Bruijn, The inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported electrocatalysts in the quest for improved CO tolerant PEMFC anodes. Electrochimica Acta, 2002. 48(2): p. 197-204.
14. Deivaraj, T.C., W. Chen, and J.Y. Lee, Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol. Journal of Materials Chemistry, 2003. 13(10): p. 2555-2560.
15. Park, K.W., J.H. Choi, B.K. Kwon, S.A. Lee, Y.E. Sung, H.Y. Ha, S.A. Hong, H. Kim, and A. Wieckowski, Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. Journal of Physical Chemistry B, 2002. 106(8): p. 1869-1877.
16. Park, K.W., J.H. Choi, S.A. Lee, C. Pak, H. Chang, and Y.E. Sung, PtRuRhNi nanoparticle electrocatalyst for methanol electrooxidation in direct methanol fuel cell. Journal of Catalysis, 2004. 224(2): p. 236-242.
17. Watanabe, M., M. Uchida, and S. Motoo, Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol. Journal of Electroanalytical Chemistry, 1987. 229(1-2): p. 395-406.
18. Schmidt, V.M., P. Bröckerhoff, B. Höhlein, R. Menzer, and U. Stimming, Utilization of methanol for polymer electrolyte fuel cells in mobile systems. Journal of Power Sources, 1994. 49(1-3): p. 299-313.
19. Lin, S.D., T.C. Hsiao, J.R. Chang, and A.S. Lin, Morphology of carbon supported Pt-Ru electrocatalyst and the CO tolerance of anodes for PEM fuel cells. Journal of Physical Chemistry B, 1999. 103(1): p. 97-103.
20. Watanabe, M. and S. Motoo, Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1975. 60(3): p. 267-273.
21. Antolini, E., Carbon supports for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental, 2009. 88(1-2): p. 1-24.
22. Meier, J.C., C. Galeano, I. Katsounaros, J. Witte, H.J. Bongard, A.A. Topalov, C. Baldizzone, S. Mezzavilla, F. Schüth, and K.J.J. Mayrhofer, Design criteria for stable Pt/C fuel cell catalysts. Beilstein Journal of Nanotechnology, 2014. 5: p. 44-67.
23. Meier, J.C., C. Galeano, I. Katsounaros, A.A. Topalov, A. Kostka, F. Schüth, and K.J.J. Mayrhofer, Degradation Mechanisms of Pt/C Fuel Cell Catalysts under Simulated Start–Stop Conditions. ACS Catalysis, 2012. 2(5): p. 832-843.
24. Graves, J.E., D. Pletcher, R.L. Clarke, and F.C. Walsh, The electrochemistry of Magnéli phase titanium oxide ceramic electrodes Part I. The deposition and properties of metal coatings. Journal of Applied Electrochemistry, 1991. 21(10): p. 848-857.
25. Fujishima, A. and K. Honda, Photolysis-decomposition of water at the surface of an irradiated semiconductor. Nature, 1972. 238(5385): p. 37-38.
26. Tauster, S., S. Fung, and R. Garten, Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. Journal of the American Chemical Society, 1978. 100(1): p. 170-175.
27. Huang, S.-Y., P. Ganesan, S. Park, and B.N. Popov, Development of a Titanium Dioxide-Supported Platinum Catalyst with Ultrahigh Stability for Polymer Electrolyte Membrane Fuel Cell Applications. Journal of the American Chemical Society, 2009. 131(39): p. 13898-13899.
28. Huang, S.-Y., P. Ganesan, and B.N. Popov, Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell. Applied Catalysis B: Environmental, 2011. 102(1–2): p. 71-77.
29. Zhang, Z., J. Liu, J. Gu, L. Su, and L. Cheng, An Overview on Metal Oxide Materials as Electrocatalysts and Supports for Polymer Electrolyte Fuel Cells. Energy & Environmental Science, 2014.
30. Suffredini, H.B., V. Tricoli, L.A. Avaca, and N. Vatistas, Sol–gel method to prepare active Pt–RuO2 coatings on carbon powder for methanol oxidation. Electrochemistry Communications, 2004. 6(10): p. 1025-1028.
31. Lasch, K., G. Hayn, L. Jörissen, J. Garche, and O. Besenhardt, Mixed conducting catalyst support materials for the direct methanol fuel cell. Journal of Power Sources, 2002. 105(2): p. 305-310.
32. Pylypenko, S., B.B. Blizanac, T.S. Olson, D. Konopka, and P. Atanassov, Composition- and Morphology-Dependent Corrosion Stability of Ruthenium Oxide Materials. ACS Applied Materials & Interfaces, 2009. 1(3): p. 604-611.
33. Schlatter, J. and M. Boudart, Hydrogenation of ethylene on supported platinum. Journal of Catalysis, 1972. 24(3): p. 482-492.
34. Horkans, J. and M. Shafer, An investigation of the electrochemistry of a series of metal dioxides with rutile‐type structure: MoO2, WO 2, ReO2, RuO2, OsO2, and IrO2. Journal of The Electrochemical Society, 1977. 124(8): p. 1202-1207.
35. García, B.L., R. Fuentes, and J.W. Weidner, Low-Temperature Synthesis of a PtRu / Nb0.1Ti0.9O2 Electrocatalyst for Methanol Oxidation. Electrochemical and Solid-State Letters, 2007. 10(7): p. B108-B110.
36. Nguyen, T.-T., V.T.T. Ho, C.-J. Pan, J.-Y. Liu, H.-L. Chou, J. Rick, W.-N. Su, and B.-J. Hwang, Synthesis of Ti0.7Mo0.3O2 supported-Pt nanodendrites and their catalytic activity and stability for oxygen reduction reaction. Applied Catalysis B: Environmental, 2014. 154–155(0): p. 183-189.
37. Lo, C.-P., G. Wang, A. Kumar, and V. Ramani, TiO2–RuO2 electrocatalyst supports exhibit exceptional electrochemical stability. Applied Catalysis B: Environmental, 2013. 140–141(0): p. 133-140.
38. Thanh Ho, V.T., K.C. Pillai, H.-L. Chou, C.-J. Pan, J. Rick, W.-N. Su, B.-J. Hwang, J.-F. Lee, H.-S. Sheu, and W.-T. Chuang, Robust non-carbon Ti0.7Ru0.3O2 support with co-catalytic functionality for Pt: enhances catalytic activity and durability for fuel cells. Energy & Environmental Science, 2011. 4(10).
39. Gojković, S.L., B.M. Babić, V.R. Radmilović, and N.V. Krstajić, Nb-doped TiO2 as a support of Pt and Pt–Ru anode catalyst for PEMFCs. Journal of Electroanalytical Chemistry, 2010. 639(1–2): p. 161-166.
40. Ganesan, P., S. Huang, and B.N. Popov, Preparation and Characterization of Pt/NbTiO2 Cathode Catalysts for Unitized Regenerative Fuel Cells (URFCs). ECS Transactions, 2008. 16(2): p. 1143-1150.
41. Nguyen, S.T., Y. Yang, and X. Wang, Ethanol electro-oxidation activity of Nb-doped-TiO2 supported PdAg catalysts in alkaline media. Applied Catalysis B: Environmental, 2012. 113–114(0): p. 261-270.
42. Raghuveer, V. and B. Viswanathan, Synthesis, characterization and electrochemical studies of Ti-incorporated tungsten trioxides as platinum support for methanol oxidation. Journal of Power Sources, 2005. 144(1): p. 1-10.
43. Thanh Ho, V.T., K.C. Pillai, H.-L. Chou, C.-J. Pan, J. Rick, W.-N. Su, B.-J. Hwang, J.-F. Lee, H.-S. Sheu, and W.-T. Chuang, Robust non-carbon Ti0.7Ru0.3O2 support with co-catalytic functionality for Pt: enhances catalytic activity and durability for fuel cells. Energy & Environmental Science, 2011. 4(10): p. 4194.
44. Kumar, A. and V. Ramani, Ta0.3Ti0.7O2 Electrocatalyst Supports Exhibit Exceptional Electrochemical Stability. Journal of The Electrochemical Society, 2013. 160(11): p. F1207-F1215.
45. Fang, B., N.K. Chaudhari, M.-S. Kim, J.H. Kim, and J.-S. Yu, Homogeneous Deposition of Platinum Nanoparticles on Carbon Black for Proton Exchange Membrane Fuel Cell. Journal of the American Chemical Society, 2009. 131(42): p. 15330-15338.
46. 科豐國際有限公司 四點探針電阻量測原理.
47. 劉端祺, 異相觸媒 chapter5-1. 2011, Handout.
48. Schmidt, T.J., H.A. Gasteiger, G.D. Stäb, P.M. Urban, D.M. Kolb, and R.J. Behm, Characterization of High‐Surface‐Area Electrocatalysts Using a Rotating Disk Electrode Configuration. Journal of The Electrochemical Society, 1998. 145(7): p. 2354-2358.
49. Lin, R.B. and S.M. Shih, Kinetics of hydrogen oxidation reaction on Nafion-coated Pt/C electrodes under high overpotentials. Journal of the Chinese Institute of Chemical Engineers, 2007. 38(5–6): p. 365-370.
50. Markovic, N.M., B.N. Grgur, C.A. Lucas, and P.N. Ross, Electrooxidation of CO and H2/CO mixtures on Pt(111) in acid solutions. Journal of Physical Chemistry B, 1999. 103(3): p. 487-495.
51. Chang, K.-H. and C.-C. Hu, Oxidative Synthesis of RuO x  ⋅ n H 2 O  with Ideal Capacitive Characteristics for Supercapacitors. Journal of The Electrochemical Society, 2004. 151(7): p. A958-A964.
52. Chang, K.-H. and C.-C. Hu, Hydrothermal Synthesis of Hydrous Crystalline RuO2 Nanoparticles for Supercapacitors. Electrochemical and Solid-State Letters, 2004. 7(12): p. A466-A469.
53. Henderson, G.S., X. Liu, and M.E. Fleet, A Ti L-edge X-ray absorption study of Ti-silicate glasses. Physics and Chemistry of Minerals, 2002. 29(1): p. 32-42.
54. Chakroune, N., G. Viau, S. Ammar, L. Poul, D. Veautier, M.M. Chehimi, C. Mangeney, F. Villain, and F. Fiévet, Acetate- and Thiol-Capped Monodisperse Ruthenium Nanoparticles:  XPS, XAS, and HRTEM Studies. Langmuir, 2005. 21(15): p. 6788-6796.
55. Dmowski, W., T. Egami, K.E. Swider Lyons, C.T. Love, and D.R. Rolison, Local Atomic Structure and Conduction Mechanism of Nanocrystalline Hydrous RuO2 from X-ray Scattering. The Journal of Physical Chemistry B, 2002. 106(49): p. 12677-12683.
56. Zhan, B.-Z., M.A. White, T.-K. Sham, J.A. Pincock, R.J. Doucet, K.V.R. Rao, K.N. Robertson, and T.S. Cameron, Zeolite-Confined Nano-RuO2:  A Green, Selective, and Efficient Catalyst for Aerobic Alcohol Oxidation. Journal of the American Chemical Society, 2003. 125(8): p. 2195-2199.
57. Carlier, D., J.-H. Cheng, C.-J. Pan, M. Ménétrier, C. Delmas, and B.-J. Hwang, DFT+U Calculations and XAS Study: Further Confirmation of the Presence of CoO5 Square-Based Pyramids with IS-Co3+ in Li-Overstoichiometric LiCoO2. The Journal of Physical Chemistry C, 2013. 117(50): p. 26493-26500.
58. Näslund, L.-Å., C.M. Sánchez-Sánchez, Á.S. Ingason, J. Bäckström, E. Herrero, J. Rosen, and S. Holmin, The Role of TiO2 Doping on RuO2-Coated Electrodes for the Water Oxidation Reaction. The Journal of Physical Chemistry C, 2013. 117(12): p. 6126-6135.
59. Ho, V.T.T., C.-J. Pan, J. Rick, W.-N. Su, and B.-J. Hwang, Nanostructured Ti0.7Mo0.3O2 Support Enhances Electron Transfer to Pt: High-Performance Catalyst for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2011. 133(30): p. 11716-11724.
60. Akalework, N.G., C.-J. Pan, W.-N. Su, J. Rick, M.-C. Tsai, J.-F. Lee, J.-M. Lin, L.-D. Tsai, and B.-J. Hwang, Ultrathin TiO2-coated MWCNTs with excellent conductivity and SMSI nature as Pt catalyst support for oxygen reduction reaction in PEMFCs. Journal of Materials Chemistry, 2012.
61. Rochefort, D. and A.-L. Pont, Pseudocapacitive behaviour of RuO2 in a proton exchange ionic liquid. Electrochemistry Communications, 2006. 8(9): p. 1539-1543.
62. Marković, N.M., B.N. Grgur, and P.N. Ross, Temperature-Dependent Hydrogen Electrochemistry on Platinum Low-Index Single-Crystal Surfaces in Acid Solutions. The Journal of Physical Chemistry B, 1997. 101(27): p. 5405-5413.
63. Seto, K., A. Iannelli, B. Love, and J. Lipkowski, The influence of surface crystallography on the rate of hydrogen evolution at Pt electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987. 226(1–2): p. 351-360.
64. Conway, B.E. and B.V. Tilak, Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochimica Acta, 2002. 47(22–23): p. 3571-3594.
65. Kunimatsu, K., T. Senzaki, G. Samjeské, M. Tsushima, and M. Osawa, Hydrogen adsorption and hydrogen evolution reaction on a polycrystalline Pt electrode studied by surface-enhanced infrared absorption spectroscopy. Electrochimica Acta, 2007. 52(18): p. 5715-5724.
66. Shih, Y.-H., G.V. Sagar, and S.D. Lin, Effect of Electrode Pt Loading on the Oxygen Reduction Reaction Evaluated by Rotating Disk Electrode and Its Implication on the Reaction Kinetics. The Journal of Physical Chemistry C, 2008. 112(1): p. 123-130.
67. Higuchi, E., H. Uchida, and M. Watanabe, Effect of loading level in platinum-dispersed carbon black electrocatalysts on oxygen reduction activity evaluated by rotating disk electrode. Journal of Electroanalytical Chemistry, 2005. 583(1): p. 69-76.
68. Bhatia, K.K. and C.-Y. Wang, Transient carbon monoxide poisoning of a polymer electrolyte fuel cell operating on diluted hydrogen feed. Electrochimica Acta, 2004. 49(14): p. 2333-2341.
69. Sung, L.-Y., B.-J. Hwang, K.-L. Hsueh, and F.-H. Tsau, Effects of anode air bleeding on the performance of CO-poisoned proton-exchange membrane fuel cells. Journal of Power Sources, 2010. 195(6): p. 1630-1639.

QR CODE