簡易檢索 / 詳目顯示

研究生: 康庭瑋
Ting-wei Kang
論文名稱: 以亞硒酸銅銦鎵前驅物調製水系漿料製備薄膜CIGS太陽能電池之研究
Fabrication of Thin Film CIGS Solar Cells from Aqueous Slurry Based on Copper Indium Gallium Selenite Precursor.
指導教授: 黃炳照
Bing-Joe Hwang
蕭敬業
Ching-Yeh Shiau
口試委員: 邱秋燕
Chiu-Yen Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 146
中文關鍵詞: 硒化銅銦鎵亞硒酸銅銦鎵薄膜太陽能電池微波合成水熱法硒化銅銦鎵塗佈沉積硒化水系漿料
外文關鍵詞: CIGSO precursor, CIS, Hydrothermal, water-based slurry
相關次數: 點閱:275下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之研究是以亞硒酸銅銦鎵前驅物進行水系漿料調配,並以刮刀塗佈沉積薄膜。研究內容,主要可分為四部份。第一部分著重於微波合成製程放大,以更大之微波反應器,透過微波功率、反應溫度及時間之調整,可有效合成大量之硒氧化銅銦鎵前驅物,有利於後續漿料製備。
    第二部分則是水系漿料之調配,將前驅物粉體與去離子水搭配適當之分散劑混合,並藉由介達電位之測定,找尋合適之分散條件,而固含量的多寡、研磨方式、調整漿料pH值等,均有助於漿料懸浮與分散,以利於塗佈出緻密的薄膜。
    第三部分則是將上述之漿料,藉由快速成膜之自動化刮刀塗佈法,進行前驅物薄膜之沉積。此外,前述之分散劑,亦需於成膜後藉適當熱處理方式移除,以免有機物殘留,影響未來本吸收層材料特性。
    第四部分則在550 ℃及適當氣氛下,進行前驅物薄膜之還原與硒化,透過高溫鍛燒製備出均勻、緻密之硒化銅銦鎵薄膜。硒化後薄膜,除以電子顯微鏡觀察其表面與截面之形態外,亦運用EDX與XRD,進行組成與晶相特色的鑑定分析,證實均具有純相黃銅礦之結構。藉由探討各製程步驟及其影響,以及理想的操作條件,相信有助於加速未來硒化銅銦鎵薄膜非真空製程的發展與實現。


    We try to develop a process to fabrication of thin film CIGS solar cells from aqueous slurry based on copper indium gallium selenite (CIGSO) precursor. The study consists of four major parts. The first part is to synthesize the CIGSO precursor with amorphous structure in large quantity use microwave-assisted hydrothermal route. Through a bigger reactor, we increased the production efficiently by adjusting the output power, reaction time and temperature. The developed method is considered to be a high potential for further applications.
    The issues associated with the mixing and dispersion of water-based slurry was performed in the second part. By measuring the Zeta-potential of the solution under different pH values, the influences of different solid contents, dispersants, and mechanical treatment as well as the selection and combination of these factors were closely examined.In the third part, the deposition of the precursor layer by automatic doctor-blade coating machine was performed. A pre-heating process follows to remove organic dispersant from the cast film, so that the film composition and crystal growth will not be deteriorated.
    Finally, the dried film was annealed at 550 ℃under the selenium vapor atmosphere to form dense and uniform CIGS absorber layer. We used SEM to see the morphology and the cross-section of films before and after the selenization. EDX and XRD measurement were carried out for composition and crystal structure analysis respectively. The results confirm that the film has a composition close to the designed stoichiometric ratio and exhibits a chalcopyrite crystal structure.Finally, we have successfully developed an efficient process for fabrication of thin film CIGS absorber layer. These characteristics of the developed method open up a new perspective to develop a non-vacuum production for CIGS thin film solar cells.

    目錄 I 摘要 I 英文摘要 III 第一章 緒論 1 1.1 前言 1 1.2 太陽能電池的發展 2 1.3 太陽能光譜與照度 2 1.4 太陽能電池原理介紹 4 1.4.1 p-n接面太陽能電池之特性曲線 7 1.5 太陽能電池材料與種類 9 1.5.1 薄膜型太陽能電池 10 1.6 研究動機與目的 14 第二章 文獻回顧與理論基礎 18 2.1 硒化銅銦鎵吸收層材料結構與組成 18 2.2 硒化銅銦鎵吸收層薄膜製備技術 20 2.3 真空製程 22 2.3.1 共蒸鍍沉積硒化銅銦鎵吸收層 22 2.3.2 以濺鍍法製備硒化銅銦鎵薄膜 25 2.4 非真空製程 27 2.4.1 電鍍法沉積硒化銅銦鎵薄膜 27 2.4.2塗佈沉積硒化銅銦鎵薄膜 28 2.5漿料製程之硒化銅銦鎵奈米粒子製備 32 2.5.1 固態法合成硒化銅銦鎵粉體 32 2.5.2 水熱/溶熱法合成硒化銅銦鎵粉體 34 2.5.3 微波輔助加熱促進硒化銅銦鎵奈米粒子合成 36 2.5.4 微波合成原理 38 2.6 漿料調製技術 39 第三章 實驗方法與儀器設備介紹 42 3.1 實驗方法 42 3.1.1放大製程之硒化銅銦鎵粉體之合成 42 3.1.2 漿料調製與刮刀塗佈製備硒化銅銦鎵薄膜 44 3.2 儀器設備 46 3.3 實驗藥品 47 3.4 材料特性分析與儀器原理 48 3.4.1 X光繞射(XRD)分析 48 3.4.2掃描式電子顯微鏡(SEM)材料表面形態分析 49 3.4.3能量分散光譜(EDX)元素組成分析 50 3.4.4 熱重分析儀(TGA) 51 3.4.5 介達電位值(Zeta-potential)之量測 52 第四章 結果與討論 54 4.1 放大製程-微波水熱法合成硒化銅銦鎵粒子 54 4.1.1 掃描式電子顯微鏡(SEM)表面形態分析 55 4.1.2能量分散光譜(EDX)之分析 59 4.2 水系漿料分散與調製 63 4.2.1 分散劑之選用及其特性 65 4.2.1.1 聚丙烯酸(PAA) 66 4.2.1.2 Tamol (2001) 67 4.2.2 添加物之影響 70 4.2.2.1添加氧化銅之影響 70 4.2.2.2添加氟化鈉之影響 74 4.2.3 機械研磨方式特性分析 74 4.2.4漿料分散之pH值調整 76 4.2.4.1 以PAA為分散劑 78 4.2.4.2 以Tamol為分散劑 82 4.3 刮刀塗佈製備硒化銅銦鎵薄膜 87 4.3.1 刮刀狹縫與漿料固含量對膜厚之關係 87 4.3.2 漿料研磨與分散對塗佈之影響 92 4.3.3 前處理-分散劑之移除 97 4.3.3.1 以聚丙烯酸(PAA)作為分散劑 97 4.3.3.2. 以Tamol作為分散劑 102 4.4 還原與硒化製備硒化銅銦鎵薄膜 103 4.4.1 高溫鍛燒對膜緻密性之影響 103 4.4.2 薄膜厚度於硒化後之影響 105 4.4.3 添加物對硒化長晶之影響 112 4.4.3.1 以PAA作為分散劑 113 4.4.3.2 以Tamol作為分散劑 115 第五章 綜合討論 118 5.1 製程放大-微波水熱法合成硒氧化銅銦鎵前驅物 118 5.1.1微波水熱法合成條件調整之探討 118 5.1.2 製備硒化銅銦鎵粒子之相關文獻比較 121 5.2水系漿料調製與分散之探討 123 5.2.1 分散劑與pH值環境之影響 123 5.2.2 漿料研磨方式所造成固含量之影響 125 5.3 刮刀塗佈與還原硒化製備硒化銅銦鎵薄膜之探討 126 5.3.1 漿料固含量與刮刀狹縫尺寸對於薄膜厚度之影響 126 5.3.2 漿料研磨方式對塗佈後緻密性之影響 128 5.4 硒化環境對結構的影響 129 第六章 結論 131 第七章 未來與展望 134 第八章 參考文獻 135

    第八章 參考文獻
    【1】 Jenny Nelson., The Physics Of Solar Cells, Landon, Imperial College Press, 2003.
    【2】 S.O. Kasap, Optoelectronics and Photonics: Principles and Practices, New Jersey, Prentice Hall, 2001.
    【3】 L. Kazmerski, D. Gwinner, A. Hicks, “Reported timeline of solar cell energy conversion efficiencies” National Renewable Energy Laboratory, (2007).
    【4】 R. W. Miles, G. Zoppi, I. Forbes, “Inorganic photovoltaic cells”, Materialstoday, 10, (2007), 20.
    【5】 A. Luaue and S. Hegedus, “Hand book of photovoltaic Science and Engineering”, (2004).
    【6】 X. Wu, J. C. Keane, R. G. Dhere, C DeHart, A. Duda, T. A. Gessert, S. Asher, D. H. Levi, P. Sheldon, “16.5% efficient CdS/CdTe polycrystalline thin film solar cell”, Conference Proc. 17th Euro. Conf. Photovoltaic Solar Energy Conference, Munich. October 22, (2001), 955.
    【7】 H. Hahn et al.,” Untersuchungen über ternäre Chalkogenide. V. Über einige ternäre Chalkogenide mit Chalkopyritstruktur”, Z. Anorg. Allg. Chem., 271, (1953), 153.
    【8】 J. Shay, J. Wernick, “Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Application”, Pergamon Press, Oxford, (1974).
    【9】 B. Tell, J. Shay, H. Kasper,” Optical and Electrical Properties of AgGaS2 and AgGaSe2”, Phys. Rev. B, 4, (1971), 4455.
    【10】 B. Tell, J. Shay, H. Kasper,”Room-Temperature Electrical Properties of Ten I-III-VI2 Semiconductors”, J. Appl. Phys., 43, (1972), 2469.
    【11】 W. Chen et al., Proc. 19th IEEE Photovoltaic Specialist Conf., (1987), 1445.
    【12】 R. Potter,” Enhanced photocurrent ZnO/CdS/CuInSe2 solar cells”, Sol. Cells, 16, (1986), 521.
    【13】 J. Hedstrom et al.,” ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance”, Proc. 23rd IEEE Photovoltaic Specialist Conf., (1993), 364.
    【14】 A. M. Gabor et al.,” Band-gap engineering in Cu(In,Ga)Se2 thin films grown from (In,Ga)2Se3 precursors”, Sol. Energy Mater. Sol. Cells, 41-42, (1996), 247.
    【15】 D. Tarrant, J. Ermer,” I-III-VI2 multinary solar cells based on CuInSe2”, Proc. 23rd IEEE Photovoltaic Specialist Conf., (1993), 372.
    【16】 Ingrid Repins1, Miguel A. Contreras, Brian Egaas, Clay DeHart, John Scharf, Craig L. Perkins, Bobby To, Rommel Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with81.2% Fill Factor”, Prog. Photovolt: Res. Appl., (2008).
    【17】 D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si”, Appl. Phys. Lett., 31, (1977), 292.
    【18】 William N. Shafarman, Lars Stolt , “Cu(InGa)Se2 Solar Cells”, John Wiley & Sons, (2003).
    【19】 Godecke T, Haalboom T, Ernst F, “Phase equilibria of Cu-In-Se I.Stable states and nonequilibrium states of the In2Se3-Cu2Se subsystem”, Z. Metallkd , 91, (2000), 622–634.
    【20】 M. Kaelin, D. Rudmann, A.N. Tiwari, “Low cost processing of CIGS thin film solar cells”, Solar Energy, 77, (2004), 749–756.
    【21】 D. Mattox, “Handbook of Physical Vapor Deposition (PVD) Processing”, Noyes Publ., Park Ridge, NJ, (1998).
    【22】 Wuerth Solar 線上型蒸鍍装置
    【23】 M. Powalla et al., “Highly efficient CIS solar cells and modules made by the co-evaporation process.” Thin Solid Films 517 (2009) 2111–2114
    【24】 M. Powalla, B. Dimmler, R. Schäffler, G. Voorwinden, U. Stein, H.-D.Mohring, F. Kessler, D.Hariskos, 19th European Photovoltaic Solar Energy Conference, Paris, 2004, p.1663.
    【25】 Ingrid Repins1, Miguel A. Contreras, Brian Egaas, Clay DeHart, John Scharf, Craig L. Perkins, Bobby To, Rommel Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with81.2% Fill Factor”, Prog. Photovolt: Res. Appl., (2008).
    【26】 S. Grindle, C. Smith, S. Mittleman, “ Preparation and properties of CuInS2 thin films produced by exposing sputtered Cu-In films to an H2S atmosphere”, Appl. Phys. Lett., 35, (1979) , 24.
    【27】 T. Chu, S. Chu, S. Lin, J Yue, “Large Grain Copper Indium Diselenide Films”, J. Electrochem., 131, (1984) , 2182-2185.
    【28】 C. Jensen, D. Tarrant, J. Ermer, G. Pollock, “The role of gallium in CuInSe2 solar cells fabricated by a two-stage method”, Proc. 23rd IEEE Photovoltaic Specialist Conf., (1993) , 577.
    【29】 M. Marudachalam et al., “Preparation of homogeneous Cu(InGa)Se2 films by selenization of metal precursors in H2Se atmosphere ”, Appl. Phys. Lett., 67, 3978–3980, (1995)
    【30】 Ingrid Repins1, Miguel A. Contreras, Brian Egaas, Clay DeHart, John Scharf, Craig L. Perkins, Bobby To, Rommel Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with81.2% Fill Factor”, Prog. Photovolt: Res. Appl., (2008).
    【31】 R.N.Bhattacharya, J. Electrochem. Soc., vol. 130, p. 2041, 1983.
    【32】 A.M. Fernandez, P.J. Sebastian, A.M. Hermann, R.N. Bhattacharya, R.N. Noufi, and M.A. Contreras, WREC1996, pp.396-399
    【33】 R.N. Bahattacharya, W. Batchelor, J.E. Granata, F. Hasoon, H. Wiesner, K. Ramanathan, J. Keane, and R.N. Noufi, Solar Energy Materials and Solar Cells, vol. 55, pp. 83-94, 1998.
    【34】 R.N. Bhattacharya, J.F. Hiltner, W. Batchelor, M.A. Contreras, R.N. Noufi, and J.R. Sites, Thin Solid Films, vol. 361-362, pp.396-399, 2000.
    【35】 C.J. Huang, T.H. Meen, M.Y. Lai, and W.R. Chen, Solar Energy Materials & Solar Cells, vol. 82, pp. 553–565, 2004.
    【36】 N.B. Chaure, A.P. Samantilleke, R.P. Burton, J. Young, and I.M. Dharmadasa, Thin Solid Films, vol. 472, pp. 212-16, 2005.
    【37】 M. Dharmadasa, N. B. Chaure, G. J. Tolan, and A. P. Samantilleke, Journal of The Electrochemical Society, vol. 154, pp. H466-H471, 2007.
    【38】 T. Arita, N. Suyama, Y. Kita, et al. “CuInSe2 films prepared by screen printing and sintering method”, Proc. 20th IEEE Photovoltaic Specialists Conf., IEEE, NY, 1650, (1988).
    【39】 G. Norsworthy, C. R. Leidholm, A. Halani, V. K. Kapur, R. Roe, B. M. Basol, R. Matson, “CIS film growth by metallic ink coating and selenization”, Sol. Energy Mater. Sol. Cells, 60, (2000) 127.
    【40】 B. M. Basol, “Low cost techniques for the preparation of Cu(In,Ga)(Se,S)2 absorber layers”, Thin Solid Films, 361-362, (2000), 514.
    【41】 V. K. Kapur, A. Bansal, P. Le, O. I. Asensio, “Non-vacuum processing of CuIn1−xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks”, Thin Solid Films, 431–432, (2003) , 53.
    【42】 J. K. J. van Duren, C. Leidholm, A. Pudov, M. R. Robinson, Y. Roussillon, “ High-performance thin-film photovoltaics using low-cost process technology “, Nanosolar, 5521 Hellyer Avenue, San Jose, Ca. 95138, USA
    【43】 N. Yamamoto, S. Ishida, and H. Horinaka, “Solid state growth of CuInSe2 and CuInTe2”, Japan. J. Appl. Phys., 28, (1989), 1780.
    【44】 T. Wada, and H. Kinoshita, “Rapid exothermic synthesis of chalcopyrite-type CuInSe2”, J. Phys. Chem. Solids, 66, (2005), 1987.
    【45】 T. Wada, and H. Kinoshita, “Preparation of CuIn(S,Se)2 by mechanochemical process”, Thin Solid Films, 480-481, (2005), 92.
    【46】 B. Li, Y. Xie, J. Huang, Y. Qian, ”Synthesis by a solvothermal route and characterization of CuInSe2 nanowhiskers and nanoparticles”, Adv. Mater., 17, (1999), 1456.
    【47】 S. Jackson, B. Baron, R. Rocheleau, T. Russell, “A chemical reaction model for physical vapor deposition of compound semiconductor films“, Am. Inst. Chem. Eng. J., 33, (1987), 711.
    【48】 Jiang Tang, Sean Hinds, Shana O. Kelley, Edward H. Sargent “Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles“, Chem. Mater. XXXX, xxx, 000–000
    【49】 . C. C. Landry, and A. R. Barron, “Synthesis of polycrystalline chalcopyrite semiconductors by microwave irradiation”, Science 260,(1993),1653.
    【50】 H. Grisaru, O. Palchik, and A. Gedanken, “Microwave-assisted polyol synthesis of CuInTe2 and CuInSe2 nanoparticles”, Inorg. Chem., 42, (2003), 7148.
    【51】 Pugh R. J., Lennart Bergstrom, “Surface and Colloid Chemistry inAdvanced Ceramics Processing ”, Marcel Dekker (1994).
    【52】 林志隆, 以微波水熱法合成新穎硒化銅銦鎵(CuIn1-xGaxSe2)材料應用於薄膜CIGS太陽能電池之研究, 國立台灣科技大學/化學工程研究所碩士論文, (2008)
    【53】 林志隆,財團法人工業技術研究院,期中報告 - 奈米化合物分散與水系漿料調製技術
    【54】 Bulent M. Basol, Vijay K. Kapur, Arvind T. Halan, Craig R. Leidholm, Robert A. Roe, U.S. Patent 5,985,691
    【55】 J Klaer et al., “Efficient CuInS2 thin-film solar cells prepared by a sequential process” Semicond. Sci. Technol. 13, 1456-1458.
    【56】 D.Rudmann et al., “Sodium incorporation strategies for CIGS growth at different temperatures” Thin Solid Films 480-481 (2005) 55-60
    【57】 Xiao-Jun LuO et al., “Preparation of aluminum nitride green sheets by aqueous tape casting”, Ceramics International 30 (2004) 2099-2103.
    【58】 SeJin Ahn et al., “Cu(In,Ga)Se2 thin film solar cells from nano- particle precursors”, Current Applied Physics 8 (2008)
    【59】 E. De Giglio et al., “Analytical investigations of poly(acrylic acid) coatings electrodeposited on titanium-based implants: a versatile approach to biocompatibility enhancement”, Anal Bioanal Chem , 389, (2007), 2055–2063.
    【60】 Dong-Ki Kim et al., “Patterned grafting of acrylic acid onto polymer substrates”, Polym. Adv. Technol. , 20, (2009), 173–177
    【61】 R. Scheer et al., “Scavenging of excess Cu atoms in CulnS 2 films by sulphur annealing”, Solar Energy Materials and Solar Cells 41/42 (1996) 261-270
    【62】 工業技術研究院(ITRI),邱秋燕博士,廖曰純博士
    【63】 Y.-G. Chuna, K.-H. Kim, K.H. Yoon, “Synthesis of CuInGaSe2 nanoparticles by solvothermal route“, Thin Solid Films, 480–481, (2005), 46–49.
    【64】 Jiang Tang, Sean Hinds, Shana O. Kelley, Edward H. Sargent “Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles“, Chem. Mater. XXXX, xxx, 000–000.
    【65】 J. Olejnicek et al., “A non-vacuum process for preparing nanocrystalline CuIn1-xGaxSe2 materials involving an open-air solvothermal reaction”, Solar Energy Materials & Solar Cells, (2009).
    【66】 SeJin Ahn et al., “Nucleating and growth of Cu(In, Ga)Se2 nanoparticles in low temperature colloidal process”, Thin Solid Films, 515, (2007), 4036-4040.

    QR CODE