簡易檢索 / 詳目顯示

研究生: 吳佩棻
Pei-Fen Wu
論文名稱: 矽酸鎂低介電微波陶瓷暫態液相燒結應用
Transient liquid phase sintering of low dielectric microwave Mg2SiO4 ceramic
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 王丞浩
Chen-Hao Wang
游進陽
Chin-Yang Yu
周育任
Yu-Jen Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 115
中文關鍵詞: 噴霧乾燥法暫態液相燒結矽酸鎂微波介電陶瓷
外文關鍵詞: Spray drying, Transient liquid phase sintering, Mg2SiO4, Microwave dielectric ceramics
相關次數: 點閱:215下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年 5G 技術蓬勃發展向高頻化邁進,隨著通訊設備的工作頻率擴展到
    毫米波段,信號延遲問題變得尤為關鍵。因此,對於微波元件的關鍵材料─
    微波介電陶瓷,性能要求更加嚴苛。低介電常數材料能夠有效降低基板與金
    屬電極之間的交互耦合損耗,大幅縮短晶片間訊號的傳播延遲時間。其中橄
    欖石結構的矽酸鎂(Mg2SiO4)有低介電常數與高品質因子,作為毫米波介
    電陶瓷相當關鍵。但,矽酸鎂合成時常見的第二相問題,以及高燒結溫度使
    其在工業上應用較為不利。本實驗將以工業上具有量產能力的噴霧乾燥法
    合成純相矽酸鎂,並利用暫態液相燒結嘗試降低其燒結溫度,以達成節省成
    本的目的。
    實驗分成三個階段:首先使用不同的前驅物製備溶液,並以噴霧乾燥法
    製備粉體,探討能夠製備出純相矽酸鎂的關鍵因素及前驅物選擇,測試其最
    低煅燒溫度;接著觀察在前驅溶液中使用不同螯合劑對粉體形貌的影響,期
    望獲得更接近圓球形的結果,提高堆積密度;最後以不同濃度及時間對粉體
    進行酸洗,使粉體表面均勻分布非晶層,提高其燒結成效。
    實驗結果顯示,透過酸洗進行暫態液相燒結的粉體能夠具有比起未經
    過酸洗的粉體更高的燒結成效及更好的介電性質,並達成降低燒結溫度的
    目的。


    There has been a booming development of 5G technology in recent years.
    Microwave components are rapidly moving towards higher frequencies. As
    communication devices extend their operating frequencies to the millimeter-wave
    range, signal latency becomes even more critical. Therefore, higher performance
    requirements are placed on the key material for microwave components, which is
    microwave dielectric ceramics. Compared to materials with medium to high
    dielectric constants, low dielectric constant materials can effectively reduce the
    coupling losses between the substrate and metal electrodes, significantly
    shortening signal propagation delay between chips. One typical low-dielectric
    ceramic is magnesium silicate (Mg2SiO4) with an olivine structure, which offers
    a low dielectric constant and high-quality factor, making it crucial for millimeterwave dielectric ceramics. However, issues such as the presence of second phases
    during magnesium silicate synthesis and the high sintering temperature pose
    challenges for its industrial application. In this study, we will synthesize purephase magnesium silicate using the industrially scalable spray drying method and
    attempt to lower the sintering temperature through transient liquid phase sintering,
    aiming to achieve cost savings.
    The experiment is divided into three stages. Firstly, different precursors are used
    to prepare solutions, and powders are synthesized using the spray drying method
    to investigate the key factors and precursor selection for obtaining pure-phase
    magnesium silicate, while determining the minimum sintering temperature.
    Secondly, the influence of different chelating agents in the precursor solution on
    the particle morphology is observed, aiming to achieve a more spherical shape and improve packing density. Finally, acid etching is performed on the powders
    using different concentrations and durations to achieve a uniform distribution of
    the amorphous phase on the powder surface, thereby enhancing the sintering
    efficiency.
    The experimental results show that the powders subjected to acid etching for
    transient liquid phase sintering exhibit higher sintering efficiency and better
    dielectric properties compared to the powders without acid etching, thereby
    achieving the goal of reducing the sintering temperature.

    摘要 i Abstract ii 致謝 iv 目錄 v 圖目錄 x 表目錄 xv 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 微波通訊技術 3 2.2 毫米波介電陶瓷 4 2.2.1 介電常數 5 2.2.2 品質因子 7 2.2.3 共振頻率溫度飄移係數 8 2.3 陶瓷粉體合成 9 2.3.1 固態合成法 9 2.3.2 溶膠凝膠法 10 2.3.3 沉澱法/共沉澱法 10 2.3.4 噴霧熱裂解 11 2.3.5 噴霧乾燥法 11 2.4 矽酸鎂第二相問題 12 2.4.1 機械活化 13 2.4.2 溶膠凝膠法改性 13 2.4.3 前驅物選擇 14 2.5 粉體顆粒形貌 14 2.6 陶瓷燒結 15 2.6.1 燒結機制 16 2.6.2 燒結過程 17 2.6.3 液相燒結 18 2.7 暫態液相燒結 21 2.8 粉體表面改質 21 第三章 實驗方法與目的 24 3.1 實驗設計 24 3.1.1 純相矽酸鎂陶瓷粉體製備 25 3.1.2 矽酸鎂陶瓷粉體顆粒形貌 28 3.1.3 暫態液相燒結 29 3.2 實驗藥品 32 3.3 實驗儀器設備 33 3.4 樣品製備流程 35 3.4.1 純相矽酸鎂粉體製備 35 3.4.2 粉體顆粒形貌控制 36 3.4.3 暫態液相燒結 36 3.5 樣品性質及分析 37 3.5.1 X射線繞射分析儀 37 3.5.2 聚焦離子束顯微系統 39 3.5.3 傅立葉轉換紅外線光譜儀 40 3.5.4 熱機械分析儀 41 3.5.5 阿基米德法 41 3.5.6 穿透式電子顯微鏡 42 3.5.7 LCR meter 43 第四章 實驗結果 45 4.1 矽酸鎂陶瓷粉體分析 46 4.1.1 不同前驅物製備之粉體晶相分析 46 4.1.2 不同前驅物製備之粉體形貌分析 48 4.1.3 不同煅燒溫度之矽酸鎂粉體晶相分析 50 4.1.4 不同煅燒溫度之矽酸鎂粉體官能基分析 51 4.2 純相矽酸鎂粉體顆粒形貌影響分析 52 4.2.1 不同螯合劑製備之粉體晶相分析 53 4.2.2 不同螯合劑製備之粉體顆粒表面形貌分析 54 4.2.3 不同螯合劑製備之粉體堆積密度結果 56 4.2.4 不同螯合劑製備之粉體熱收縮率隨溫度變化圖形 57 4.3 純相矽酸鎂陶瓷粉體酸洗結果分析 58 4.3.1 不同濃度的酸對矽酸鎂粉體酸洗結果晶相分析 58 4.3.2 不同濃度的酸對矽酸鎂粉體酸洗顆粒燒結密度結果 60 4.3.3 不同時間對矽酸鎂粉體酸洗結果晶相分析 61 4.3.4 不同時間對矽酸鎂粉體酸洗燒結後之表面形貌圖像 62 4.3.5 不同時間對矽酸鎂粉體酸洗後之燒結密度結果 64 4.3.6 不同時間對矽酸鎂粉體酸洗後之隨溫度變化熱收縮率圖形 65 4.3.7 不同時間對矽酸鎂粉體酸洗後之非晶相圖像分析 67 4.3.8 不同時間對矽酸鎂粉體酸洗後之電性分析 71 第五章 結果討論 73 5.1 純相矽酸鎂陶瓷粉體製備 73 5.1.1 不同前驅物製備之粉體比較 73 5.1.2 不同煅燒溫度之矽酸鎂粉體比較 76 5.2 螯合劑控制矽酸鎂陶瓷粉體顆粒形貌 77 5.3 矽酸鎂粉體酸洗結果分析 79 5.3.1 不同濃度的酸對矽酸鎂粉體酸洗結果比較 79 5.3.2 不同時間對矽酸鎂粉體酸洗結果比較 81 第六章 結論 86 第七章 未來工作 87 參考文獻 88

    [1] 何政哲, "高品質因數介電質之研發及其在微波元件應用," 碩士, 電子工程系, 國立雲林科技大學, 雲林縣, 2022.
    [2] 廖一鴻, "介電陶瓷材料(Mg1-xCox)2(Ti0.95Sn0.05)O4之微波介電特性改善與應用," 碩士, 電機工程學系, 國立成功大學, 台南市, 2014.
    [3] 王俞婷, "Mg4Nb2O9相陶瓷填入對低溫共燒陶瓷基板之影響研究," 碩士, 材料科學與工程系所, 國立交通大學, 新竹市, 2006.
    [4] 王譽錚, "高介電係數A(La,B)4(Ti,Sn)4O15 (A=Ca,Sr ; B=Nd)微波介電材料之研製與其八木天線應用之研究," 碩士, 電機工程學系碩士班, 國立聯合大學, 苗栗縣, 2013.
    [5] D. Zhou, L.-X. Pang, D.-W. Wang, C. Li, B.-B. Jin, and I. M. Reaney, "High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture," Journal of Materials Chemistry C, vol. 5, no. 38, pp. 10094-10098, 2017.
    [6] 許倬彰, "介電陶瓷材料(Mg1-xZnx)2(Ti1-ySny)O4之微波介電特性改善與應用," 碩士, 電機工程學系, 國立成功大學, 台南市, 2015.
    [7] F. Hu, Z.-P. Xie, J. Zhang, Z.-L. Hu, and D. An, "Promising high-thermal-conductivity substrate material for high-power electronic device: silicon nitride ceramics," Rare Metals, vol. 39, no. 5, pp. 463-478, 2020.
    [8] G. He, Z. Li, Y. Dong, and G. Wang, "Effects of excessive magnesium oxide and sintering regime on microstructure and dielectric properties of forsterite ceramics for millimeterwave dielectrics," Journal of Materials Science: Materials in Electronics, vol. 33, no. 6, pp. 3129-3138, 2022.
    [9] H. Ohsato, T. Tsunooka, T. Sugiyama, K.-I. Kakimoto, and H. Ogawa, "Forsterite ceramics for millimeterwave dielectrics," Journal of Electroceramics, vol. 17, no. 2-4, pp. 445-450, 2006.
    [10] R. Vehring, "Pharmaceutical particle engineering via spray drying," Pharmaceutical research, vol. 25, pp. 999-1022, 2008.
    [11] R. Patel, M. Patel, and A. Suthar, "Spray drying technology: an overview," Indian Journal of Science and Technology, vol. 2, no. 10, pp. 44-47, 2009.
    [12] I. Filková and A. S. Mujumdar, "Industrial spray drying systems," Handbook of industrial drying, vol. 1, pp. 263-308, 1995.
    [13] H. E. Exner and E. Arzt, "Sintering processes," Sintering Key Papers, pp. 157-184, 1990.
    [14] S.-J. Shih, W.-L. Tzeng, Z.-M. Wang, P. Veteška, D. Galusek, and W.-H. Tuan, "Surface modification of starting powder for dense polycrystalline SrTiO3 ceramics," Ceramics International, vol. 43, pp. S10-S14, 2017.
    [15] S. Sano et al., "Synthesis of High Density and Transparent Forsterite Ceramics Using Nano-Sized Precursors and Their Dielectric Properties," Journal of the American Ceramic Society, vol. 89, no. 2, pp. 568-574, 2006.
    [16] U. Nurbaiti, Darminto, Triwikantoro, M. Zainuri, and S. Pratapa, "Synthesis and characterization of silica sand-derived nano-forsterite ceramics," Ceramics International, vol. 44, no. 5, pp. 5543-5549, 2018/04/01/ 2018.
    [17] M.-E. Song et al., "Synthesis and Microwave Dielectric Properties of MgSiO<sub>3</sub>Ceramics," Journal of the American Ceramic Society, vol. 91, no. 8, pp. 2747-2750, 2008.
    [18] F. Tavangarian and R. Emadi, "Effects of mechanical activation and chlorine ion on nanoparticle forsterite formation," Materials Letters, vol. 65, no. 1, pp. 126-129, 2011/01/15/ 2011.
    [19] 陈嘉禾 and 卞建江, "无机介质材料的微波介电特性测量," 电子元件与材料, no. 02, 2007.
    [20] B. Kim et al., "Temperature dependence of quality factor in MEMS resonators," Journal of Microelectromechanical systems, vol. 17, no. 3, pp. 755-766, 2008.
    [21] W. Volksen, R. D. Miller, and G. Dubois, "Low dielectric constant materials," Chemical reviews, vol. 110, no. 1, pp. 56-110, 2010.
    [22] R. Singh and R. K. Ulrich, "High and low dielectric constant materials," The Electrochemical Society Interface, vol. 8, no. 2, p. 26, 1999.
    [23] F. M. Al-Oqla and A. A. Omar, "An expert-based model for selecting the most suitable substrate material type for antenna circuits," International Journal of Electronics, vol. 102, no. 6, pp. 1044-1055, 2015.
    [24] M. Ma et al., "The dielectric properties of some ceramic substrate materials at terahertz frequencies," Journal of the European Ceramic Society, vol. 39, no. 14, pp. 4424-4428, 2019/11/01/ 2019.
    [25] D. Zhou, L.-X. Pang, D.-W. Wang, Z.-M. Qi, and I. M. Reaney, "High quality factor, ultralow sintering temperature Li6B4O9 microwave dielectric ceramics with ultralow density for antenna substrates," ACS Sustainable Chemistry & Engineering, vol. 6, no. 8, pp. 11138-11143, 2018.
    [26] S. J. Penn et al., "Effect of porosity and grain size on the microwave dielectric properties of sintered alumina," Journal of the American Ceramic Society, vol. 80, no. 7, pp. 1885-1888, 1997.
    [27] T. Tsunooka et al., "Development of forsterite with high Q and zero temperature coefficient τf for millimeterwave dielectric ceramics," Key Engineering Materials, vol. 269, pp. 199-202, 2004.
    [28] F. Ghariani, R. Fezei, and A. H. Hamzaoui, "Synthesis, characterization, and application of sol gel derived Mg2SiO4 powder," Journal of Sol-Gel Science and Technology, vol. 88, no. 1, pp. 100-104, 2018.
    [29] S. M. Naga et al., "Forsterite/nano-biogenic hydroxyapatite composites for biomedical applications," Journal of Asian Ceramic Societies, vol. 8, no. 2, pp. 373-386, 2020.
    [30] A. Belyakov, N. Andrianov, and S. Strel’nikova, "Evaluation of the magnesium and silicon diffusion rates in forsterite synthesis using various magnesium compounds," Inorganic Materials, vol. 48, pp. 176-180, 2012.
    [31] K. X. Song, X. M. Chen, and X. C. Fan, "Effects of Mg/Si Ratio on Microwave Dielectric Characteristics of Forsterite Ceramics," Journal of the American Ceramic Society, vol. 90, no. 6, pp. 1808-1811, 2007.
    [32] X. Ren et al., "Facile synthesis of MgO–Mg2SiO4 composite ceramics with high strength and low thermal conductivity," Ceramics International, vol. 47, no. 14, pp. 19959-19969, 2021/07/15/ 2021.
    [33] D. Bokov et al., "Nanomaterial by Sol-Gel Method: Synthesis and Application," Advances in Materials Science and Engineering, vol. 2021, pp. 1-21, 2021.
    [34] S. A. Jones, J. M. Burlitch, J. C. Duchamp, and T. M. Duncan, Journal of Sol-Gel Science and Technology, vol. 15, no. 3, pp. 201-209, 1999.
    [35] K. P. Sanosh, A. Balakrishnan, L. Francis, and T. N. Kim, "Sol–gel synthesis of forsterite nanopowders with narrow particle size distribution," Journal of Alloys and Compounds, vol. 495, no. 1, pp. 113-115, 2010/04/09/ 2010.
    [36] A. Douy, Journal of Sol-Gel Science and Technology, vol. 24, no. 3, pp. 221-228, 2002.
    [37] R. Y. S. Zampiva, L. H. Acauan, L. M. dos Santos, R. H. R. de Castro, A. K. Alves, and C. P. Bergmann, "Nanoscale synthesis of single-phase forsterite by reverse strike co-precipitation and its high optical and mechanical properties," Ceramics International, vol. 43, no. 18, pp. 16225-16231, 2017/12/15/ 2017.
    [38] "Unknown article," doi: 10.1088/0004-637x/709.
    [39] P. S. Patil, "Versatility of chemical spray pyrolysis technique," Materials Chemistry and physics, vol. 59, no. 3, pp. 185-198, 1999.
    [40] G. L. Messing, S. C. Zhang, and G. V. Jayanthi, "Ceramic powder synthesis by spray pyrolysis," Journal of the American Ceramic Society, vol. 76, no. 11, pp. 2707-2726, 1993.
    [41] 陳怡蓁, "製備與分析應用於輻射冷卻之二氧化鈦-二氧化矽-聚甲基丙烯酸甲酯塗層," 碩士, 材料科學與工程系, 國立臺灣科技大學, 台北市, 2022.
    [42] T. Peng et al., "Nanoporous mannitol carrier prepared by non-organic solvent spray drying technique to enhance the aerosolization performance for dry powder inhalation," Scientific reports, vol. 7, no. 1, p. 46517, 2017.
    [43] L. M. Anovitz, A. J. Rondinone, L. Sochalski-Kolbus, J. Rosenqvist, and M. C. Cheshire, "Nano-scale synthesis of the complex silicate minerals forsterite and enstatite," Journal of Colloid and Interface Science, vol. 495, pp. 94-101, 2017.
    [44] S. A. Hassanzadeh-Tabrizi and E. Taheri-Nassaj, "Polyacrylamide gel synthesis and sintering of Mg2SiO4:Eu3+nanopowder," Ceramics International, vol. 39, no. 6, pp. 6313-6317, 2013/08/01/ 2013.
    [45] Y. M. Tan et al., "Study on the effects of milling time and sintering temperature on the sinterability of forsterite (Mg2SiO4)," Journal of the Ceramic Society of Japan, vol. 123, no. 1443, pp. 1032-1037, 2015.
    [46] S. Ramesh et al., "Nanocrystalline forsterite for biomedical applications: Synthesis, microstructure and mechanical properties," Journal of the Mechanical Behavior of Biomedical Materials, vol. 25, pp. 63-69, 2013/09/01/ 2013.
    [47] A. Saberi, B. Alinejad, Z. Negahdari, F. Kazemi, and A. Almasi, "A novel method to low temperature synthesis of nanocrystalline forsterite," Materials Research Bulletin, vol. 42, no. 4, pp. 666-673, 2007/04/12/ 2007.
    [48] M. T. Tsai, "Hydrolysis and condensation of forsterite precursor alkoxides: modification of the molecular gel structure by acetic acid," Journal of Non-Crystalline Solids, vol. 298, no. 2, pp. 116-130, 2002/03/01/ 2002.
    [49] 林佳瑩, "以有機鹼催化溶-凝膠反應製備有機-無機複合材料之研究," 碩士, 材料科學與工程系所, 國立交通大學, 新竹市, 2007.
    [50] M. A. Naghiu, M. Gorea, E. Mutch, F. Kristaly, and M. Tomoaia-Cotisel, "Forsterite Nanopowder: Structural Characterization and Biocompatibility Evaluation," Journal of Materials Science & Technology, vol. 29, no. 7, pp. 628-632, 2013/07/01/ 2013.
    [51] L. Cheng et al., "Fabrication of nanopowders by high energy ball milling and low temperature sintering of Mg2SiO4 microwave dielectrics," Journal of alloys and compounds, vol. 513, pp. 373-377, 2012.
    [52] M. H. Fathi and M. Kharaziha, "The effect of fluorine ion on fabrication of nanostructure forsterite during mechanochemical synthesis," Journal of Alloys and Compounds, vol. 472, no. 1, pp. 540-545, 2009/03/20/ 2009.
    [53] H. B. Bafrooei, T. Ebadzadeh, and H. Majidian, "Microwave synthesis and sintering of forsterite nanopowder produced by high energy ball milling," Ceramics International, vol. 40, no. 2, pp. 2869-2876, 2014.
    [54] M. H. Fathi and M. Kharaziha, "Mechanically activated crystallization of phase pure nanocrystalline forsterite powders," Materials Letters, vol. 62, no. 27, pp. 4306-4309, 2008/10/31/ 2008.
    [55] M. Kharaziha and M. H. Fathi, "Synthesis and characterization of bioactive forsterite nanopowder," Ceramics International, vol. 35, no. 6, pp. 2449-2454, 2009/08/01/ 2009.
    [56] M. B. D. Mitchell, D. Jackson, and P. F. James, Journal of Sol-Gel Science and Technology, vol. 26, no. 1/3, pp. 777-782, 2003, doi: 10.1023/a:1020722926865.
    [57] R. K. Pati, J. C. Ray, and P. Pramanik, "A novel chemical route for the synthesis of nanocrystalline α-Al2O3 powder," Materials Letters, vol. 44, no. 5, pp. 299-303, 2000/07/01/ 2000.
    [58] N. Maliavski, O. Dushkin, J. Markina, and G. Scarinci, "Forsterite powder prepared from water‐soluble hybrid precursor," AIChE journal, vol. 43, no. S11, pp. 2832-2836, 1997.
    [59] S. Rastegari et al., "Non-hydrolytic sol-gel processing of chloride precursors loaded at forsterite stoichiometry," Journal of Alloys and Compounds, vol. 688, pp. 235-241, 2016, doi: 10.1016/j.jallcom.2016.07.187.
    [60] T. S. Sasikala and M. T. Sebastian, "Mechanical, thermal and microwave dielectric properties of Mg2SiO4 filled Polyteterafluoroethylene composites," Ceramics International, vol. 42, no. 6, pp. 7551-7563, 2016/05/01/ 2016.
    [61] L. Alamilla-Beltran, J. J. Chanona-Perez, A. R. Jimenez-Aparicio, and G. F. Gutierrez-Lopez, "Description of morphological changes of particles along spray drying," Journal of Food Engineering, vol. 67, no. 1-2, pp. 179-184, 2005.
    [62] D. Corker, R. Whatmore, E. Ringgaard, and W. Wolny, "Liquid-phase sintering of PZT ceramics," Journal of the European Ceramic Society, vol. 20, no. 12, pp. 2039-2045, 2000.
    [63] J. Mackenzie and R. Shuttleworth, "A phenomenological theory of sintering," Proceedings of the Physical Society. Section B, vol. 62, no. 12, p. 833, 1949.
    [64] R. Brook, "Sintering: An Overview," Concise Encyclopedia of Advanced Ceramic Materials, pp. 438-440, 1991.
    [65] Z. Wang et al., "Enhanced Microwave Dielectric Properties and Sintering Behaviors of Mg2SiO4-Li2TiO3-LiF Ceramics by Adding CaTiO3 for LTCC and GPS Antenna Applications," Crystals, vol. 12, no. 4, p. 512, 2022, doi: 10.3390/cryst12040512.
    [66] X. Kuang, G. Carotenuto, and L. Nicolais, "A review of ceramic sintering and suggestions on reducing sintering temperatures," Advanced Performance Materials, vol. 4, pp. 257-274, 1997.
    [67] K. I. Rybakov, E. A. Olevsky, and E. V. Krikun, "Microwave sintering: fundamentals and modeling," Journal of the American Ceramic Society, vol. 96, no. 4, pp. 1003-1020, 2013.
    [68] R. M. German, P. Suri, and S. J. Park, "Liquid phase sintering," Journal of materials science, vol. 44, pp. 1-39, 2009.
    [69] S. J. L. Kang, "5 - Liquid phase sintering," in Sintering of Advanced Materials, Z. Z. Fang Ed.: Woodhead Publishing, 2010, pp. 110-129.
    [70] R. de Oro Calderon, C. Gierl-Mayer, and H. Danninger, "Fundamentals of sintering: Liquid phase sintering," Encyclopedia of materials: metals and alloys, vol. 3, pp. 481-492, 2022.
    [71] G. Petzow and W. Kaysser, "Basic mechanisms of liquid phase sintering," in Sintering Key Papers: Springer, 1990, pp. 595-614.
    [72] K. S. Hwang and H. S. Huang, "Identification of the segregation layer and its effects on the activated sintering and ductility of Ni-doped molybdenum," Acta Materialia, vol. 51, no. 13, pp. 3915-3926, 2003/08/01/ 2003.
    [73] V. K. Gupta, D.-H. Yoon, H. M. Meyer, and J. Luo, "Thin intergranular films and solid-state activated sintering in nickel-doped tungsten," Acta Materialia, vol. 55, no. 9, pp. 3131-3142, 2007/05/01/ 2007.
    [74] T. Tsunooka, M. Androu, Y. Higashida, H. Sugiura, and H. Ohsato, "Effects of TiO2 on sinterability and dielectric properties of high-Q forsterite ceramics," Journal of the European Ceramic Society, vol. 23, no. 14, pp. 2573-2578, 2003/01/01/ 2003.
    [75] W. MacDonald and T. Eagar, "Transient liquid phase bonding," Annual review of materials science, vol. 22, no. 1, pp. 23-46, 1992.
    [76] L. A. Chick et al., "Phase transitions and transient liquid‐phase sintering in calcium‐substituted Lanthanum Chromite," Journal of the American Ceramic Society, vol. 80, no. 8, pp. 2109-2120, 1997.
    [77] A. J. Stevenson, E. R. Kupp, and G. L. Messing, "Low temperature, transient liquid phase sintering of B2O3-SiO2-doped Nd: YAG transparent ceramics," Journal of Materials Research, vol. 26, no. 9, pp. 1151-1158, 2011.
    [78] A. Knaislova, P. Novak, F. Průša, and J. Stoulil, "Pickling of Ti-Al-Si alloy powders—A method for improving compaction with spark-plasma sintering," Mater. Technol, vol. 52, pp. 681-686, 2018.
    [79] M. Y. Wang, F. Zhao, J. S. Li, S. Li, and X. J. Wu, "Acid-Washing Behavior of TiB2/MgAl2O4/MgO Composite Powders," Key Engineering Materials, vol. 602, pp. 101-104, 2014.
    [80] X. Kong, W. Hu, Z. Du, T. Sun, and Z. Ma, "Effect of surface modification on the microstructure and sintering characteristics of tungsten nanopowders prepared by a wet chemical method," Philosophical Magazine Letters, vol. 101, no. 6, pp. 253-263, 2021.
    [81] C. Li et al., "Preparation and characterization of mullite whisker reinforced ceramics made from coal fly ash," Ceramics International, vol. 45, no. 5, pp. 5613-5616, 2019/04/01/ 2019.
    [82] X.-Y. Ding et al., "Study on activated W powders by chemical activation pretreatment and its sintering behavior," International Journal of Refractory Metals and Hard Materials, vol. 47, pp. 12-17, 2014.
    [83] N. M. Hwang, Y. J. Park, D. Y. Kim, and D. Y. Yoon, "Activated sintering of nickel-doped tungsten: approach by grain boundary structural transition," Scripta Materialia, vol. 42, no. 5, pp. 421-425, 2000/02/14/ 2000.
    [84] O. S. Pokrovsky and J. Schott, "Kinetics and mechanism of forsterite dissolution at 25 C and pH from 1 to 12," Geochimica et Cosmochimica Acta, vol. 64, no. 19, pp. 3313-3325, 2000.
    [85] F. K. Crundwell, "The mechanism of dissolution of forsterite, olivine and minerals of the orthosilicate group," Hydrometallurgy, vol. 150, pp. 68-82, 2014/12/01/ 2014.
    [86] R. C. L. Jonckbloedt, "Olivine dissolution in sulphuric acid at elevated temperatures—implications for the olivine process, an alternative waste acid neutralizing process," Journal of Geochemical Exploration, vol. 62, no. 1, pp. 337-346, 1998/06/01/ 1998.
    [87] D. S. Kim and C. K. Lee, "Surface modification of precipitated calcium carbonate using aqueous fluosilicic acid," Applied Surface Science, vol. 202, no. 1, pp. 15-23, 2002/12/15/ 2002.
    [88] Y. Chen and S. L. Brantley, "Dissolution of forsteritic olivine at 65°C and 2<pH<5," Chemical Geology, vol. 165, no. 3, pp. 267-281, 2000/04/24/ 2000.
    [89] Y. Itoh, I. W. Lenggoro, S. E. Pratsinis, and K. Okuyama, "Agglomerate-free BaTiO3 particles by salt-assisted spray pyrolysis," Journal of materials research, vol. 17, no. 12, pp. 3222-3229, 2002.
    [90] A. Purwanto, W.-N. Wang, I. W. Lenggoro, and K. Okuyama, "Formation and luminescence enhancement of agglomerate-free YAG: Ce3+ submicrometer particles by flame-assisted spray pyrolysis," Journal of The Electrochemical Society, vol. 154, no. 3, p. J91, 2007.
    [91] S. Tamin, S. B. R. S. Adnan, M. H. Jaafar, and N. S. Mohamed, "Effects of sintering temperature on the structure and electrochemical performance of Mg2SiO4 cathode materials," Ionics, vol. 24, pp. 2665-2671, 2018.
    [92] S. A. Hassanzadeh-Tabrizi, A. Bigham, and M. Rafienia, "Surfactant-assisted sol–gel synthesis of forsterite nanoparticles as a novel drug delivery system," Materials Science and Engineering: C, vol. 58, pp. 737-741, 2016/01/01/ 2016.
    [93] L. Lin, Y. Min, S. Chaoshu, Z. Weiping, and Y. Baogui, "Synthesis and Luminescence Properties of Red Phosphors: Mn2+ Doped MgSiO3 and Mg2SiO4 Prepared by Sol-Gel Method," Journal of Rare Earths, vol. 24, no. 1, Supplement 1, pp. 104-107, 2006/12/01/ 2006.
    [94] S. J. Klosowicz, P. Furtak, E. Michalski, and A. Majchrowski, "Thermoluminescent properties of sol-gel-produced (MgO) x:(SiO2) y compounds," in Solid State Crystals 2002: Crystalline Materials for Optoelectronics, 2003, vol. 5136: SPIE, pp. 115-119.
    [95] L. Mathur, S. K. Saddam Hossain, M. R. Majhi, and P. K. Roy, "Synthesis of nano-crystalline forsterite (Mg2SiO4) powder from biomass rice husk silica by solid-state route," Boletín de la Sociedad Española de Cerámica y Vidrio, vol. 57, no. 3, pp. 112-118, 2018/05/01/ 2018.
    [96] S. Ni, L. Chou, and J. Chang, "Preparation and characterization of forsterite (Mg2SiO4) bioceramics," Ceramics International, vol. 33, no. 1, pp. 83-88, 2007/01/01/ 2007.
    [97] X. Chen et al., "Study on the Synthesis of Nano-Crystalline Mg2SiO4 Powders by Aqueous Sol-Gel Process," Key Engineering Materials, vol. 538, pp. 142-145, 2013.
    [98] B. Karmakar, G. De, and D. Ganguli, "Dense silica microspheres from organic and inorganic acid hydrolysis of TEOS," Journal of non-crystalline solids, vol. 272, no. 2-3, pp. 119-126, 2000.
    [99] M. Tsai, "Effects of hydrolysis processing on the character of forsterite gel fibers. Part I: preparation, spinnability and molecular structure," Journal of the European Ceramic Society, vol. 22, no. 7, pp. 1073-1083, 2002.
    [100] M. Tsai, "Effects of hydrolysis processing on the character of forsterite gel fibers. Part II: crystallites and microstructural evolutions," Journal of the European Ceramic Society, vol. 22, no. 7, pp. 1085-1094, 2002.
    [101] I. Strawbridge, A. F. Craievich, and P. F. James, "The effect of the H2O/TEOS ratio on the structure of gels derived by the acid catalysed hydrolysis of tetraethoxysilane," Journal of Non-Crystalline Solids, vol. 72, no. 1, pp. 139-157, 1985/06/01/ 1985.
    [102] 王志盟, "羧酸官能基濃度對於釔鋁石榴石粉末形貌及螢光性質之研究," 碩士, 材料科學與工程系, 國立臺灣科技大學, 台北市, 2018.
    [103] H. Zhu and R. Averback, "Sintering of nano-particle powders: simulations and experiments," MATERIAL AND MANUFACTURING PROCESS, vol. 11, no. 6, pp. 905-923, 1996.
    [104] K. Miyake, Y. Hirata, T. Shimonosono, and S. Sameshima, "The effect of particle shape on sintering behavior and compressive strength of porous alumina," Materials, vol. 11, no. 7, p. 1137, 2018.
    [105] R. German, "The prediction of packing and sintering density for bimodal powder mixtures," Advances in Powder Metallurgy & Particulate Materials--1992., vol. 3, pp. 1-15, 1992.
    [106] F. Wakai, "Modeling and simulation of elementary processes in ideal sintering," Journal of the American Ceramic Society, vol. 89, no. 5, pp. 1471-1484, 2006.
    [107] E. H. Oelkers, "An experimental study of forsterite dissolution rates as a function of temperature and aqueous Mg and Si concentrations," Chemical Geology, vol. 175, no. 3, pp. 485-494, 2001/06/01/ 2001.
    [108] J. Declercq, O. Bosc, and E. H. Oelkers, "Do organic ligands affect forsterite dissolution rates?," Applied Geochemistry, vol. 39, pp. 69-77, 2013/12/01/ 2013.
    [109] C. Sun, Z. Yao, Q. Wang, L. Guo, and X. Shen, "Theoretical study on the organic acid promoted dissolution mechanism of forsterite mineral," Applied Surface Science, vol. 614, p. 156063, 2023/03/30/ 2023.
    [110] R. Pelberg, W. Mazur, and E. E. Kim, "Cardiac CT Angiography Manual," Journal of Nuclear Medicine, vol. 49, no. 5, pp. 861-861, 2008, doi: 10.2967/jnumed.107.049643.

    QR CODE