簡易檢索 / 詳目顯示

研究生: 傅勝文
Kenny Purnomo
論文名稱: 缸內直噴汽油引擎之層狀及均質油氣混 合實驗研究
Experimental Study on the Stratified and Homogeneous Charge Operation of a Gasoline Direct Injection (GDI) Engine
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 蘇裕軒
Yu-Hsuan Su
吳浴沂
Yuh-Yih Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 105
中文關鍵詞: Gasoline direct injectionhomogeneous modestratified mode
外文關鍵詞: Gasoline direct injection, homogeneous mode, stratified mode
相關次數: 點閱:184下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A gasoline direct injection engine allows a combustion to run in strati ed charge
    operation. In comparison to homogeneous charge operation, the strati ed charge
    operation is able to utilize an overall lean mixture. In collaboration with an engine
    company, this paper uses a wall-guided direct injection engine with a turbocharger
    system. Through this wall-guided type engine, the mixture is injected directly at
    the piston head surface in the compression stroke. Performing split injections,
    which are in intake and compression strokes, provides a stoichiometric mixture
    near the spark plug while maintaining overall lean mixture inside the cylinder.
    The rst injection of fuel is performed in the intake stroke at a xed timing and
    various pulse widths, while the second injection timing and pulse width are varied.
    Fuel pressure, valve timing, and spark timing are also adjusted in order to achieve
    optimal performance. Combustion duration of each modes are determined using
    ve di erent methods: (I) Entropy method, (II) Logarithmic scale method, (III)
    Two in
    ection points of speci c heat ratio, (IV) Mass fraction burned, and (V)
    Heat release method. It is observed that the best method to describe the combus-
    tion characteristic of strati ed charge operation is the heat release method. When
    operated in low load and engine speed, fuel pressure is a parameter that deter-
    mines the stability in a wall-guided type engine with multi-hole injectors. The
    best brake speci c fuel consumption improvement, about 19.55% is obtained at
    strati ed mode. Exhaust emission amounts
    uctuate depending on the operating
    conditions of an engine.


    A gasoline direct injection engine allows a combustion to run in strati ed charge
    operation. In comparison to homogeneous charge operation, the strati ed charge
    operation is able to utilize an overall lean mixture. In collaboration with an engine
    company, this paper uses a wall-guided direct injection engine with a turbocharger
    system. Through this wall-guided type engine, the mixture is injected directly at
    the piston head surface in the compression stroke. Performing split injections,
    which are in intake and compression strokes, provides a stoichiometric mixture
    near the spark plug while maintaining overall lean mixture inside the cylinder.
    The rst injection of fuel is performed in the intake stroke at a xed timing and
    various pulse widths, while the second injection timing and pulse width are varied.
    Fuel pressure, valve timing, and spark timing are also adjusted in order to achieve
    optimal performance. Combustion duration of each modes are determined using
    ve di erent methods: (I) Entropy method, (II) Logarithmic scale method, (III)
    Two in
    ection points of speci c heat ratio, (IV) Mass fraction burned, and (V)
    Heat release method. It is observed that the best method to describe the combus-
    tion characteristic of strati ed charge operation is the heat release method. When
    operated in low load and engine speed, fuel pressure is a parameter that deter-
    mines the stability in a wall-guided type engine with multi-hole injectors. The
    best brake speci c fuel consumption improvement, about 19.55% is obtained at
    strati ed mode. Exhaust emission amounts
    uctuate depending on the operating
    conditions of an engine.

    Abstract i Acknowledgements ii Contents iii List of Figures vi List of Tables viii 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation and Objective . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Experimental Setup 4 2.1 Experimental Hardware . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.2 Woodward Electronic Control Module . . . . . . . . . . . . 4 2.1.3 Dynamometer . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.4 Emission Measurement . . . . . . . . . . . . . . . . . . . . . 6 2.1.5 Combustion Analysis Measurement . . . . . . . . . . . . . . 7 2.1.6 Sensors and Actuators . . . . . . . . . . . . . . . . . . . . . 8 2.1.7 Data Acquisition System . . . . . . . . . . . . . . . . . . . . 11 2.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Simulink and MotoHawk . . . . . . . . . . . . . . . . . . . . 11 2.2.3 MotoTune . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.4 xPC Target . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 Combustion Analysis Methodology 14 3.1 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1.1 Assumptions and Limitations . . . . . . . . . . . . . . . . . 14 3.1.2 Mode Switching Strategy . . . . . . . . . . . . . . . . . . . . 15 3.1.3 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 Cylinder Volume Equation . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Combustion Duration . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.1 Entropy Method . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.2 Logarithmic Scale Method . . . . . . . . . . . . . . . . . . . 26 3.3.3 Two In ection Points of Speci c Heat Ratio Method . . . . 28 3.3.4 Mass Fraction Burned Method . . . . . . . . . . . . . . . . . 28 3.3.5 Heat Release Method . . . . . . . . . . . . . . . . . . . . . . 29 3.4 Heat Release Equation . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4.1 Estimation of TIV C . . . . . . . . . . . . . . . . . . . . . . . 32 3.4.2 Heat Transfer Equation . . . . . . . . . . . . . . . . . . . . 33 3.5 Engine Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.5.1 Indicated Work Per Cycle . . . . . . . . . . . . . . . . . . . 34 3.5.2 Mean E ective Pressure . . . . . . . . . . . . . . . . . . . . 36 3.6 Eciencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.6.1 Mechanical Eciency . . . . . . . . . . . . . . . . . . . . . . 37 3.6.2 Thermal Eciency . . . . . . . . . . . . . . . . . . . . . . . 38 3.6.3 Combustion Eciency . . . . . . . . . . . . . . . . . . . . . 38 3.6.4 Fuel Conversion Eciency . . . . . . . . . . . . . . . . . . . 38 3.6.5 Volumetric Eciency . . . . . . . . . . . . . . . . . . . . . . 39 3.7 Coecient of Variation . . . . . . . . . . . . . . . . . . . . . . . . . 39 4 Result and Discussion 40 4.1 Engine Operating Parameters . . . . . . . . . . . . . . . . . . . . . 40 4.2 Maximum Brake Torque Result . . . . . . . . . . . . . . . . . . . . 42 4.3 Pressure Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3.1 Pressure versus Crank Angle Curves . . . . . . . . . . . . . 44 4.3.2 E ect of Spark Advance on Peak Pressure . . . . . . . . . . 47 4.3.3 Pressure versus Volume Curves . . . . . . . . . . . . . . . . 48 4.4 Temperature Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.4.1 E ect of Spark Advance on Peak Temperature . . . . . . . . 50 4.5 Speci c Heat Ratio Result . . . . . . . . . . . . . . . . . . . . . . . 51 4.5.1 Fitting Result . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.5.2 Temperature Dependent Speci c Heat Ratio Result . . . . . 52 4.5.3 Polytropic Index Result . . . . . . . . . . . . . . . . . . . . 54 4.6 Heat Release Rate Result . . . . . . . . . . . . . . . . . . . . . . . 55 4.6.1 E ect of Speci c Heat Ratio on Heat Release Rate . . . . . 55 4.6.2 Comparison of Heat Release Rate . . . . . . . . . . . . . . . 56 4.6.3 E ect of Spark Advance on Heat Release Rate . . . . . . . . 58 4.7 Heat Transfer Result . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.7.1 Comparison of Several Heat Transfer Rate Models . . . . . . 58 4.7.2 Heat Release and Heat Transfer Analysis . . . . . . . . . . . 63 4.8 Combustion Duration Result . . . . . . . . . . . . . . . . . . . . . . 66 4.8.1 Entropy Method Result . . . . . . . . . . . . . . . . . . . . 67 4.8.2 Logarithmic Scale Method Result . . . . . . . . . . . . . . . 68 4.8.3 Two In ection Points of Speci c Heat Ratio Method Result 70 4.8.4 Mass Fraction Burned Method Result . . . . . . . . . . . . . 73 4.8.5 Heat Release Method Result . . . . . . . . . . . . . . . . . . 75 4.8.6 E ect of Spark Advance on Combustion Duration . . . . . . 75 4.9 Work and Eciency Result . . . . . . . . . . . . . . . . . . . . . . 77 4.9.1 E ect of Spark Advance on Friction and Pumping Losses . . 78 4.10 Fuel Consumption and Emission Analysis Result . . . . . . . . . . . 80 4.10.1 E ect of Spark Advance on Emissions . . . . . . . . . . . . . 82 5 Conclusion 86 Appendix A { List of Symbols 87 Appendix B { List of Abbreviations 90 References 92

    [1] G. Fiengo, A. di Gaeta, A. Palladino, and V. Giglio, Common rail system for GDI engines.
    Modelling, Identi cation, and Control. Springer New York Heidelberg Dordrecht, London,
    2013.
    [2] Volkswagen, Self-study programme 246. Variable Valve Timing with
    uted variator, Volk-
    swagen AG, Wolfsburg.
    [3] J. B. Heywood, Internal Combustion Engine Fundamentals. McGraw-Hill, New York,
    1988.
    [4] Y. B. Cengel and M. A. Boles, Thermodynamics. An Engineering Approach. McGraw-Hill
    College, Boston, 2006.
    [5] M. Shehata, \Cylinder pressure, performance parameters, heat release, speci c heats ratio
    and duration of combustion for spark ignition engine," Energy, Elsevier, vol. 35, pp. 4710{
    4725, 2010.
    [6] T. I. Mohamad, \Combustion characteristics of methane in a direct injection engine using
    spark plug fuel injector," Jurnal Kejuruteraan, vol. 22, pp. 43{52, 2010.
    [7] Y. Demirel, Energy. Production, Conversion, Storage, Conservation, and Coupling.
    Springer New York Heidelberg Dordrecht, London, 2012.
    [8] R. G. Valle and J. A. P. Lopes, Electric Vehicle Integration into Modern Power Networks.
    Springer New York Heidelberg Dordrecht, London, 2013.
    [9] H. Zhao, Advanced direct injection combustion engine technologies and development. Volume
    1: Gasoline and gas engines. Woodhead Publishing Limited, Abington Hall, Granta Park,
    Great Abington, Cambridge CB21 6AH, UK, 2010.
    [10] M. Costa, U. Sorge, S. Merola, A. Irimescu, M. L. Villetta, and V. Rocco, \Split injection
    in a homogeneous strati ed gasoline direct injection engine for high combustion eciency
    and low pollutants emission," Energy, Elsevier, vol. 117, pp. 405{415, 2016.
    [11] J. Hunicz, A. Niewczas, P. Kordos, and M. Geca, \An analysis of eciency and exhaust
    emission of the gasoline spray-guided engine," Silniki Spalinowe, vol. R. 50, nr 3, 2011.
    [12] \Engine combustion modeling an introduction," http://www.me.ua.edu/me418/, accessed:
    2017-06-02.
    [13] E. Pipitone and A. Beccari, \Determination of tdc in internal combustion engines by a newly
    developed thermodynamic approach," Applied Thermal Engineering, Elsevier, vol. 30, pp.
    1914{1926, 2010.
    [14] M. Tazerout, O. L. Corre, and S. Rousseau, \Tdc determination in ic engines based on
    the thermodynamic analysis of the temperature-entropy diagram," SAE Technical Paper
    1999-01-1489, 1999.
    [15] B. R. Brown, \Combustion data acquisition and analysis," Master theses, Loughborough
    University, 2001.
    [16] S. N. Wildhaber, \Impact of combustion phasing on energy and availability distributions
    of an internal combustion engine," Master theses, Missouri University of Science and Tech-
    nology, 2011.
    [17] J. A. A. Yamin, H. N. Gupta, and B. B. Bansal, \The e ect of combustion duration on the
    performance and emission characteristics of propane-fueled 4-stroke si engines," Emirates
    Journal for Engineering Research, vol. 8, pp. 1{14, 2003.
    [18] J. A. A. Yamin, H. N. Gupta, B. B. Bansal, and O. Srivastava, \E ect of combustion
    duration on the performance and emission characteristics of a spark ignition engine using
    hydrogen as a fuel," International Journal of Hydrogen Energy, vol. 25, pp. 581{589, 2000.
    [19] M. Tazerout and O. L. Corre, \A new method to determine the start and end of com-
    bustion in an internal combustion engine using entropy changes," International Journal of
    Thermodynamics, vol. 3, pp. 49{55, 2000.
    [20] M. Ceviz and I. Kaymaz, \Temperature and air-fuel ratio dependent speci c heat ratio
    functions for lean burned and unburned mixture," Energy Conversion and Management,
    Elsevier, vol. 3, pp. 49{55, 2000.
    [21] Yeliana, \Parametric combustion modeling for ethanol{gasoline fuelled spark ignition en-
    gines," PhD dissertation, Michigan Technological University, 2010.
    [22] Yeliana, C. Cooney, J. Worm, D. Michalek, and J. Naber, \Wiebe function parameter
    determination for mass fraction burn calculation in an ethanol-gasoline fuelled si engine,"
    KONES Powertrain and Transport, vol. 15, 2008.
    [23] M. Klein, \A speci c heat ratio model and compression ratio estimation," Master theses,
    Linkping University, 2004.
    [24] R. Ebrahimi, \E ect of speci c heat ratio on heat release analysis in a spark ignition
    engine," Scientia Iranica, vol. 18, pp. 1231{1236, 2011.
    [25] H. Gurbuz, \Parametrical investigation of heat transfer with fast response thermocouple in
    si engine," ASCE, vol. 142, 2016.
    [26] S. K. Kamboj and M. N. Kairimi, \E ects of compression ratios, fuels and speci c heats
    on the energy distribution in spark- ignition engine," IJETAE, vol. 2, 2012.
    [27] Y.-Y. Wu, B.-C. Chen, and J. H. Wang, \Experimental study on hcci combustion in a
    small engine with various fuels and egr," Aerosol and Air Quality Research, vol. 16, pp.
    3338{3348, 2016.
    [28] R. Stone, Introduction to Internal Combustion Engines. The Macmillan Press LTD, 1992.
    [29] M. Mladek and C. H. Onder, \A model for the estimation of inducted air mass and the
    residual gas fraction using cylinder pressure measurements," SAE Technical Paper 2000-
    01-0958, 1999.
    [30] Y. Y. Wu, B. C. Chen, and F. C. Hsieh, \Heat transfer model for small-scale air-cooled
    spark-ignition four-stroke engines," International Journal of Heat and Mass Transfer, El-
    sevier, vol. 49, pp. 3895{3905, 2006.
    [31] G. Martin and N. Apostolescu, \Calculation of gas velocity inside the cylinder of spark
    ignition engines," UPB Scienti c Bulletin, Series D: Mechanical Engineering, vol. 68, no. 2,
    2006.
    [32] S. Broekaert, J. Demuynck, T. D. Cuyper, M. D. Paepe, and S. Verhelst, \Heat transfer
    in premixed spark ignition engines part i: Identi cation of the factors in
    uencing heat
    transfer," Energy, Elsevier, vol. 116, Part 1, pp. 380{391, 2016.
    [33] M. T. Garcia, F. J. J.-E. Aguilar, and T. S. Lencero, \Combustion characteristics, emissions
    and heat release rate analysis of a homogeneous charge compression ignition engine with
    exhaust gas recirculation fuelled with diesel," Energy and Fuels, vol. 23, pp. 2396{2404,
    2009.
    [34] A. G. J. Lewis, \Investigation into the e ect of the thermal management system of a diesel
    engine on the rate of heat transfer through the combustion chamber," Doctoral theses,
    University of Bath, 2014.
    [35] TSI, Combustion Analysis Basics. An Overview of Measurements, Methods and Calculations
    Used in Combustion Analysis, TSI Incorporated, USA.
    [36] SAACKE, Optimizing eciency, SAACKE GmbH, Germany.
    [37] N. S. Senanayake, T. S. S. Jatunarachchi1, and G. A. Kahandagamage, \Performance and
    emissions analysis of intercooled direct injection diesel engines used for power generation
    during day and night times operation," International Journal of Energy Engineering, vol.
    4(1), pp. 16{20, 2014.
    [38] A. M. Ickes, \Pfuel property impact on a premixed diesel combustion mode," PhD disser-
    tation, University of Michigan, 2009.
    [39] J. Su, M. Xu, T. Li, Y. Gao, and J. Wang, \Combined e ects of cooled egr and a higher geo-
    metric compression ratio on thermal eciency improvement of a downsized boosted spark-
    ignition direct-injection engine," Energy Conversion and Management, Elsevier, vol. 78,
    pp. 65{73, 2014.
    [40] Z. Y. Jing, \Investigation and analysis of engine eciency for 2.2l four strokes gasoline
    engine," Master theses, National Taipei University of Technology, 2014.
    [41] R. Rahmani, H. Rahnejat, B. Fitzsimons, and D. Dowson, \The e ect of cylinder liner
    operating temperature on frictional loss and engine emissions in piston ring conjunction,"
    Applied Energy, Elsevier, vol. 191, pp. 568{581, 2017.

    無法下載圖示 全文公開日期 2022/08/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE