簡易檢索 / 詳目顯示

研究生: 許靖翰
Jing-Han Xu
論文名稱: 以化學氣相沉積法合成垂直生長的二硫化錫奈米片和石墨烯量子點複合材料作為超級電容器的電極
CVD Synthesis of Vertical Growth SnS2 Nanosheets and Graphene Quantum Dots Composites as Electrodes for Supercapacitor
指導教授: 蔡孟霖
Meng-LinTsai
李權倍
Chuan-Pei Lee
楊伯康
Po-kang Yang
口試委員: 蔡孟霖
Meng-LinTsai
李權倍
Chuan-Pei Lee
楊伯康
Po-kang Yang
蔡東昇
Dung-Sheng Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 69
中文關鍵詞: 二硫化錫石墨烯量子點超級電容器
外文關鍵詞: Tin disulfide, Graphene quantum dots, Supercapacitors
相關次數: 點閱:309下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要關注石墨烯量子點結合垂直生長的SnS2奈米片複合材料作為超級電容器的電極 (第3章)。應用的概述將在介紹(第1章)中顯示。此外,實驗程序 (第2章) 包括化學試劑、材料表結構鑑定和電化學分析原理。在第 3 章中,我們首先介紹了 GQD-SnS2⊥CC。設計並合成了石墨烯量子點 (GQDs) 與垂直生長的SnS2奈米片形成混合結構GQD-SnS2⊥CC奈米複合材料作為SCs的電極。得益於在 SnS2 奈米片上修飾GQDs形成粗糙表面並增加反應表面積和活性位點。GQD-SnS2⊥CC 表現出優異的電化學性能,在1 A·g-1下具有出色的比電容值 (144.3 F·g-1) 和良好的倍率容量 (在10 A·g-1下保留54%),表明在能源應用方面的巨大潛力。2,000次循環後的長期穩定性為98.5%,表明 GQD-SnS2複合材料是穩定的。這項工作中開發的方法可以擴展到其他金屬硫化物或金屬氧化物電極材料的構建,以用於各種儲能應用。


his thesis mainly focuses on graphene quantum dots combining with vertical growth SnS2 nanosheets hybrid nanocomposites as electrodes for supercapacitance (Chapter 3). The overview of the application will be showed in introduction (Chapter 1). Moreover, the experiment procedures (Chapter 2) include the chemical reagent, material characterization and the principle of electrochemical analysis. In Chapter 3, We firstly introduce the GQD-SnS2⊥CC. The hybrid structure of graphene quantum dots (GQDs) combining with vertical growth SnS2 nanosheets to form GQD-SnS2⊥CC nanocomposites were designed and synthesized as the electrode for SCs. Benefiting from the GQDs modified on SnS2 nanosheets to form a rough surface and increase the reactive surface area and active sites, the GQD-SnS2⊥CC exhibits excellent electrochemical performance with the outstanding specific capacitance (144.3 F·g-1 at the current density of 1 A·g-1) and good rate capacity (54% retention at the current density of 10 A·g-1), indicating the great potential in energy application. The long-term stability was 98.5% retention over 2,000 cycles, demonstrating the GQD-SnS2 composites are stable. The method developed in this work can be extended to the construction of other metal sulfide or metal oxide electrode materials for the broad variety of energy storage applications.

Outline 致謝 i 摘要 ii Abstract iii Outline iv List of tables vi List of figures vii Chapter 1 Introduction 1 1-1 Introduction of supercapacitors (SCs) 1 1-2 Overview of tin disulfide (SnS2) and graphene quantum dots (GQDs) 11 1-2-1 2D materials - Transition metal dichalcogenides (TMDCs) 11 1-2-2 Tin disulfide (SnS2) 12 1-2-3 Graphene quantum dots (GQDs) 13 1-2-4 GQDs-SnS2 composites 15 1-3 Motivation and scope of this thesis 16 Chapter 2 Experimental procedures 18 2-1 Materials 18 2-2 Experiments relating to use CVD to synthesize graphene quantum dots decorated vertical growth SnS2 nanosheets on carbon cloth 18 2-2-1 Hydrothermal and CVD synthesis of GQDs 18 2-2-2 CVD synthesis of vertical growth SnS2 nanosheets on CC 19 2-2-3 CVD synthesis of GQDs-SnS2⊥CC 20 2-3 Analytic techniques 21 2-3-1 Material characterizations 21 2-3-2 Electrochemical properties for SCs 25 Chapter 3 Results and discussions 28 3-1 Characterization of the SnS2 & GQDs-SnS2 28 3-2 Electrochemical analyses of SnS2 and GQDs-SnS2 35 3-3 Flexible solid-state symmetrical supercapacitors 43 Chapter 4 Conclusions and suggestions 46 4-1 Conclusions 46 4-2 Suggestions 46 References 48 Curriculum Vitae 56

References
[1] Libich, J.; Máca, J.; Vondrák, J.; Čech, O.; Sedlaříková, M., Supercapacitors: properties and applications. Journal of Energy Storage 2018, 17, 224-227.
[2] Yadlapalli, R. T.; Alla, R. R.; Kandipati, R.; Kotapati, A., Super capacitors for energy storage: progress, applications and challenges. Journal of Energy Storage 2022, 49.
[3] Jung-Soo Lee, S.-I. K., Jong-Chul Yoon, and Ji-Hyun Jang, Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor. ACS Nano 2013, 7 (7), 6047–6055.
[4] Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B. Z., Graphene-based supercapacitor with an ultrahigh energy density. Nano Letters 2010, 10 (12), 4863-8.
[5] Vijayakumar, M.; Santhosh, R.; Adduru, J.; Rao, T. N.; Karthik, M., Activated carbon fibres as high performance supercapacitor electrodes with commercial level mass loading. Carbon 2018, 140, 465-476.
[6] Komatsubara, K.; Suzuki, H.; Inoue, H.; Kishibuchi, M.; Takahashi, S.; Marui, T.; Umezawa, S.; Nakagawa, T.; Nasu, K.; Maetani, M.; Tanaka, Y.; Yamada, M.; Nishikawa, T.; Yamashita, Y.; Hada, M.; Hayashi, Y., Highly oriented carbon nanotube supercapacitors. ACS Applied Nano Materials 2022, 5 (1), 1521-1532.
[7] Zhang, L. L.; Zhao, X. S., Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 2009, 38 (9), 2520-31.
[8] Meng, Q.; Cai, K.; Chen, Y.; Chen, L., Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 2017, 36, 268-285.
[9] Xu, J.; Wang, D.; Fan, L.; Yuan, Y.; Wei, W.; Liu, R.; Gu, S.; Xu, W., Fabric electrodes coated with polypyrrole nanorods for flexible supercapacitor application prepared via a reactive self-degraded template. Organic Electronics 2015, 26, 292-299.
[10] Sivakkumar, S. R.; Kim, W. J.; Choi, J.-A.; MacFarlane, D. R.; Forsyth, M.; Kim, D.-W., Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. Journal of Power Sources 2007, 171 (2), 1062-1068.
[11] An, C.; Zhang, Y.; Guo, H.; Wang, Y., Metal oxide-based supercapacitors: progress and prospectives. Nanoscale Advances 2019, 1 (12), 4644-4658.
[12] Aghazadeh, M., Electrochemical preparation and properties of nanostructured Co3O4 as supercapacitor material. Journal of Applied Electrochemistry 2012, 42 (2), 89-94.
[13] Tang, Q.; Jiang, D.-e., Stabilization and band-gap tuning of the 1T-MoS2 monolayer by covalent functionalization. Chemistry of Materials 2015, 27 (10), 3743-3748.
[14] Acerce, M.; Voiry, D.; Chhowalla, M., Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nature Nanotechnology 2015, 10 (4), 313-8.
[15] Balasingam, S. K.; Lee, J. S.; Jun, Y., Few-layered MoSe2 nanosheets as an advanced electrode material for supercapacitors. Dalton Transactions 2015, 44 (35), 15491-8.
[16] Qingyu Liao, N. L., Shuaixing Jin, Guowei Yang, and Chengxin Wang, All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 2015, 9 (5), 5310–5317.
[17] Rajapriya, A.; Keerthana, S.; Viswanathan, C.; Ponpandian, N., Direct growth of MoS2 hierarchical nanoflowers on electrospun carbon nanofibers as an electrode material for high-performance supercapacitors. Journal of Alloys and Compounds 2021, 859.
[18] Chauhan, H.; Singh, M. K.; Kumar, P.; Hashmi, S. A.; Deka, S., Development of SnS2/RGO nanosheet composite for cost-effective aqueous hybrid supercapacitors. Nanotechnology 2017, 28 (2), 025401.
[19] Moradpur-Tari, E.; Sarraf-Mamoory, R.; Yourdkhani, A., 1T-WS2/graphene on activated carbon cloth as a flexible electrode for wearable supercapacitors. Ceramics International 2022, 48 (6), 8563-8571.
[20] Xia, M.; Ning, J.; Wang, D.; Feng, X.; Wang, B.; Guo, H.; Zhang, J.; Hao, Y., Ammonia-assisted synthesis of gypsophila-like 1T-WSe2/graphene with enhanced potassium storage for all-solid-state supercapacitor. Chemical Engineering Journal 2021, 405.
[21] Lin, L.; Lei, W.; Zhang, S.; Liu, Y.; Wallace, G. G.; Chen, J., Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries. Energy Storage Materials 2019, 19, 408-423.
[22] Qu, B.; Ma, C.; Ji, G.; Xu, C.; Xu, J.; Meng, Y. S.; Wang, T.; Lee, J. Y., Layered SnS2-reduced graphene oxide composite-a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Advanced Materials 2014, 26 (23), 3854-9.
[23] Parveen, N.; Ansari, S. A.; Alamri, H. R.; Ansari, M. O.; Khan, Z.; Cho, M. H., Facile synthesis of SnS2 nanostructures with different morphologies for high-performance supercapacitor applications. ACS Omega 2018, 3 (2), 1581-1588.
[24] Wang, X.; Li, X.; Li, Q.; Li, H.; Xu, J.; Wang, H.; Zhao, G.; Lu, L.; Lin, X.; Li, H.; Li, S., Improved electrochemical performance based on nanostructured SnS2@CoS2-rGO composite anode for sodium-ion batteries. Nano-Micro Letters 2018, 10 (3), 46.
[25] Mishra, R. K.; Baek, G. W.; Kim, K.; Kwon, H.-I.; Jin, S. H., One-step solvothermal synthesis of carnation flower-like SnS2 as superior electrodes for supercapacitor applications. Applied Surface Science 2017, 425, 923-931.
[26] Wang, H.; Chao, D.; Liu, J.; Lin, J.; Shen, Z. X., Nanoengineering of 2D tin sulfide nanoflake arrays incorporated on polyaniline nanofibers with boosted capacitive behavior. 2D Materials 2018, 5 (3).
[27] Lee, K.; Lee, H.; Shin, Y.; Yoon, Y.; Kim, D.; Lee, H., Highly transparent and flexible supercapacitors using graphene-graphene quantum dots chelate. Nano Energy 2016, 26, 746-754.
[28] Lonkar, S. P.; Pillai, V. V.; Patole, S. P.; Alhassan, S. M., Scalable in situ synthesis of 2D-2D-type graphene-wrapped SnS2 nanohybrids for enhanced supercapacitor and electrocatalytic applications. ACS Applied Energy Materials 2020, 3 (5), 4995-5005.
[29] Duangchuen, T.; Karaphun, A.; Wannasen, L.; Kotutha, I.; Swatsitang, E., Effect of SnS2 concentrations on electrochemical properties of SnS2/RGO nanocomposites synthesized by a one-pot hydrothermal method. Applied Surface Science 2019, 487, 634-646.
[30] Chu, H.; Zhang, F.; Pei, L.; Cui, Z.; Shen, J.; Ye, M., Ni, Co and Mn doped SnS2-graphene aerogels for supercapacitors. Journal of Alloys and Compounds 2018, 767, 583-591.
[31] Sreenivasan, M. S., Cytology of a spontaneous triploid coffea canephora pierre ex froehner. Caryologia 1981, 34 (3), 345-349.
[32] Roy, E.; Nagar, A.; Sharma, A.; Roy, S.; Pal, S., Graphene quantum dots and its modified application for energy storage and conversion. Journal of Energy Storage 2021, 39.
[33] Zhang, S.; Sui, L.; Dong, H.; He, W.; Dong, L.; Yu, L., High-performance supercapacitor of graphene quantum dots with uniform sizes. ACS Applied Materials & Interfaces 2018, 10 (15), 12983-12991.
[34] Huang, Y.; Shi, T.; Zhong, Y.; Cheng, S.; Jiang, S.; Chen, C.; Liao, G.; Tang, Z., Graphene-quantum-dots induced NiCo2S4 with hierarchical-like hollow nanostructure for supercapacitors with enhanced electrochemical performance. Electrochimica Acta 2018, 269, 45-54.
[35] Cui, J.; Yao, S.; Lu, Z.; Huang, J.-Q.; Chong, W. G.; Ciucci, F.; Kim, J.-K., Revealing pseudocapacitive mechanisms of metal dichalcogenide SnS2/graphene-CNT aerogels for high-energy Na hybrid capacitors. Advanced Energy Materials 2018, 8 (10).
[36] Liu, G.; Li, Z.; Hasan, T.; Chen, X.; Zheng, W.; Feng, W.; Jia, D.; Zhou, Y.; Hu, P., Vertically aligned two-dimensional SnS2 nanosheets with a strong photon capturing capability for efficient photoelectrochemical water splitting. Journal of Materials Chemistry A 2017, 5 (5), 1989-1995.
[37] Li, G.; Sun, Y.; Hong, X.; Lu, W.; Chen, W.; Deng, Y.; Sun, Z.; Sun, W., Enhanced photocatalytic hydrogen production on tin disulfide self-assembled from ultrathin sheets with sulfur vacancies generated by doping indium ions. Journal of Materials Science 2021, 56 (18), 10847-10858.
[38] Zhu, H.; Liu, A.; Shan, F.; Yang, W.; Zhang, W.; Li, D.; Liu, J., One-step synthesis of graphene quantum dots from defective CVD graphene and their application in IGZO UV thin film phototransistor. Carbon 2016, 100, 201-207.
[39] Sriv, T.; Kim, K.; Cheong, H., Low-frequency raman spectroscopy of few-layer 2H-SnS2. Scientific Reports 2018, 8 (1), 10194.
[40] Nguyen, V. T.; Le, H. D.; Nguyen, V. C.; Ngo, T. T. T.; Le, D. Q.; Nguyen, X. N.; Phan, N. M., Synthesis of multi-layer graphene films on copper tape by atmospheric pressure chemical vapor deposition method. Advances in Natural Sciences: Nanoscience and Nanotechnology 2013, 4 (3), 035012.
[41] Habiba, K.; Makarov, V. I.; Avalos, J.; Guinel, M. J.; Weiner, B. R.; Morell, G., Luminescent graphene quantum dots fabricated by pulsed laser synthesis. Carbon 2013, 64, 341-350.
[42] Liu, F.; Sun, Y.; Zheng, Y.; Tang, N.; Li, M.; Zhong, W.; Du, Y., Gram-scale synthesis of high-purity graphene quantum dots with multicolor photoluminescence. RSC Advances 2015, 5 (125), 103428-103432.
[43] Khan, U.; O'Neill, A.; Lotya, M.; De, S.; Coleman, J. N., High-concentration solvent exfoliation of graphene. Small 2010, 6 (7), 864-71.
[44] Li, R.; Miao, C.; Zhang, M.; Xiao, W., Novel hierarchical structural SnS2 composite supported by biochar carbonized from chewed sugarcane as enhanced anodes for lithium ion batteries. Ionics 2019, 26 (3), 1239-1247.
[45] Ma, L.; Xu, L.; Zhou, X.; Xu, X.; Zhang, L., Molybdenum-doped few-layered SnS2 architectures with enhanced electrochemical supercapacitive performance. RSC Advances 2015, 5 (128), 105862-105868.
[46] Lu, X.; Yu, M.; Wang, G.; Tong, Y.; Li, Y., Flexible solid-state supercapacitors: design, fabrication and applications. Energy & Environmental Science 2014, 7 (7).
[47] Huang, C.; Zhang, J.; Young, N. P.; Snaith, H. J.; Grant, P. S., Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications. Scientific Reports 2016, 6, 25684.
[48] Yang, Y.; Zhu, T.; Shen, L.; Liu, Y.; Zhang, D.; Zheng, B.; Gong, K.; Zheng, J.; Gong, X., Recent progress in the all‐solid‐state flexible supercapacitors. SmartMat 2022.
[49] Yu, M.; Huang, Y.; Li, C.; Zeng, Y.; Wang, W.; Li, Y.; Fang, P.; Lu, X.; Tong, Y., Building three-dimensional graphene frameworks for energy storage and catalysis. Advanced Functional Materials 2015, 25 (2), 324-330.
[50] Zhai, T.; Wang, F.; Yu, M.; Xie, S.; Liang, C.; Li, C.; Xiao, F.; Tang, R.; Wu, Q.; Lu, X.; Tong, Y., 3D MnO2-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors. Nanoscale 2013, 5 (15), 6790-6.
[51] Wang, G.; Wang, H.; Lu, X.; Ling, Y.; Yu, M.; Zhai, T.; Tong, Y.; Li, Y., Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Advanced Materials 2014, 26 (17), 2676-82, 2615.
[52] Yu, M.; Zhang, Y.; Zeng, Y.; Balogun, M. S.; Mai, K.; Zhang, Z.; Lu, X.; Tong, Y., Water surface assisted synthesis of large-scale carbon nanotube film for high-performance and stretchable supercapacitors. Advanced Materials 2014, 26 (27), 4724-9.
[53] Liu, X.; Qian, T.; Xu, N.; Zhou, J.; Guo, J.; Yan, C., Preparation of on chip, flexible supercapacitor with high performance based on electrophoretic deposition of reduced graphene oxide/polypyrrole composites. Carbon 2015, 92, 348-353.
[54] Wan, C.; Jiao, Y.; Li, J., Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. Journal of Materials Chemistry A 2017, 5 (8), 3819-3831.
[55] Wang, X.; Yin, Y.; Hao, C.; You, Z., A high-performance three-dimensional micro supercapacitor based on ripple-like ruthenium oxide-carbon nanotube composite films. Carbon 2015, 82, 436-445.
[56] Shen, H.; Zhang, Y.; Song, X.; Liu, Y.; Wang, H.; Duan, H.; Kong, X., Facile hydrothermal synthesis of actiniaria-shaped α-MnO2/activated carbon and its electrochemical performances of supercapacitor. Journal of Alloys and Compounds 2019, 770, 926-933.
[57] Li, N.; Lv, T.; Yao, Y.; Li, H.; Liu, K.; Chen, T., Compact graphene/MoS2 composite films for highly flexible and stretchable all-solid-state supercapacitors. Journal of Materials Chemistry A 2017, 5 (7), 3267-3273.
[58] Shi, S.; Xu, C.; Yang, C.; Li, J.; Du, H.; Li, B.; Kang, F., Flexible supercapacitors. Particuology 2013, 11 (4), 371-377.
[59] Staser, J. A.; Weidner, J. W., Mathematical modeling of hybrid asymmetric electrochemical capacitors. Journal of The Electrochemical Society 2014, 161 (8), E3267-E3275.

無法下載圖示 全文公開日期 2027/08/09 (校內網路)
全文公開日期 2027/08/09 (校外網路)
全文公開日期 2027/08/09 (國家圖書館:臺灣博碩士論文系統)
QR CODE