簡易檢索 / 詳目顯示

研究生: 牟家慶
Jia-Qing Mou
論文名稱: 共蒸鍍型鈣鈦礦薄膜之研製
Development of perovskite films by co-evaporation
指導教授: 李志堅
Chih-Chien Lee
口試委員: 劉舜維
Shun-Wei Liu
范慶麟
Ching-Lin Fan
張志豪
Chih-Hao Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 67
中文關鍵詞: 鈣鈦礦共蒸鍍吸收太陽能電池
外文關鍵詞: perovskite, co-evaporation, absorption, solar cells
相關次數: 點閱:275下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,鈣鈦礦太陽能電池(Perovskite solar cells, PSCs)因為在效率表現上超越許多新世代太陽能電池,因此成為許多研究關注的焦點。而目前大多是透過溶液製程(Solution process)的方式來合成鈣鈦礦的薄膜,因為溶液製程是藉由旋轉塗布的方式,所以製程時間快速,因此大多數的研究皆是採取此方法。但溶液製程因為是在手套箱環境下製作的,而且全程使用手動的方式操作,所以薄膜的穩定度不佳,也不容易量產,再加上過程中會使用大量有毒的有機溶劑,所以會對環境造成汙染,因此利用真空製程(Vacuum process)的方式製作鈣鈦礦薄膜是有其重要性的。
本論文藉由使用共蒸鍍製程(Co-evaporation process)的方式合成鈣鈦礦薄膜,透過調整機台參數,使前驅物能夠順利沉積到基板,而使用蒸鍍的方式所製作出的鈣鈦礦薄膜,其薄膜的狀況較好,而且穩定度較佳,並透過量測薄膜的吸收曲線來驗證合成的好壞,最後利用此合成出來的鈣鈦礦薄膜製作鈣鈦礦太陽能電池,經過優化成功製作出轉換效率為11.76 % 的鈣鈦礦太陽能電池。


In recent years, perovskite solar cells (PSCs) have become the focus of many researches due to perovskite surpassed many new-generation solar cells in efficiency. At present, most of the perovskite films are synthesized through the solution process. Because the solution process is use spin-coating method, the process time is fast. Therefore, most researches use this method to process. However, the solution process is made in a glove box environment, and the entire process is operated manually. Therefore, the stability of the film is not good, and it is not easy to mass production. In addition, a lot of toxic organic solvents are used in the solution process, so it will destroy the environment. Therefore, when we fabricate the perovskite films, vacuum process is very important.
In this thesis, we synthesized the perovskite film by using the co-evaporation process. By adjusting the evaporation machine parameters, the perovskite precursor can be successfully deposited on the substrate. We found that the perovskite film fabricated by vapor deposition has better film quality and better device stability. We measure the absorption curve of the film to verify the quality of the synthesis. Finally, we use synthesized perovskite film to make the perovskite solar cell. After optimization, we can successfully fabricated a perovskite solar cell with 11.76% power conversion efficiency(PCE).

中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖索引 VII 表索引 X 第一章 緒論 1 1.1 前言 1 1.2 太陽能電池簡介 2 1.3 鈣鈦礦太陽能電池發展 3 1.3.1 鈣鈦礦名稱由來 3 1.3.2 鈣鈦礦結構 3 1.3.3 鈣鈦礦太陽能電池發展歷史 4 第二章 理論基礎 7 2.1 鈣鈦礦薄膜製程方式 7 2.1.1 溶液製程(Solution process) 7 2.1.2 真空製程(Vacuum process) 8 2.1.3 真空輔助溶液製程(Vapor assisted solution deposition, VASD) 9 2.2 鈣鈦礦太陽能電池運作原理 10 2.2.1 吸收光能(Light absorption) 10 2.2.2 激子擴散(Exciton diffusion) 11 2.2.3 激子拆解(Exciton dissociation) 11 2.2.4 電荷收集(Charge collection) 12 2.3 元件特性曲線 13 2.3.1 開路電壓(Voc) 14 2.3.2 短路電流密度(Jsc) 15 2.3.3 填充因子(FF) 15 2.3.4 功率轉換效率(PCE) 16 2.3.5 串聯電阻(Rs)與並聯電阻(Rsh) 16 2.4 太陽能電池等效電路 17 第三章 研究動機與文獻回顧 18 3.1 研究動機 18 3.2 文獻回顧 19 第四章 實驗架構 24 4.1 實驗材料 24 4.2 實驗儀器 24 4.2.1 超音波震盪機 24 4.2.2 雷射雕刻機 25 4.2.3 熱蒸鍍機 26 4.2.4 薄膜厚度量測儀 27 4.2.5 鈣鈦礦蒸鍍機 28 4.2.6 手套箱 29 4.2.7 紫外光曝光機 30 4.2.8 太陽光模擬器 30 4.2.9 外部量子效率量測系統 31 4.2.10 紫外光-可見光光譜儀 32 4.2.11 原子力顯微鏡 33 4.3 實驗步驟 33 4.3.1 基板圖案化 33 4.3.2 元件基板清洗 34 4.3.3 熱蒸鍍製程 34 4.3.4 鈣鈦礦蒸鍍製程 35 4.3.5 元件封裝 36 4.4 量測分析 37 4.4.1 鈣鈦礦薄膜特性 37 4.4.2 元件光電特性 37 4.4.3 元件外部量子效率 37 第五章 結果與討論 38 5.1 機台結構設計分析 38 5.2 機台參數設定 41 5.3 鈣鈦礦薄膜的合成 42 5.4 基板之選擇 46 第六章 結論與未來展望 48 參考文獻 52

[1] C. Lacchini, R. Rüther, “The influence of government strategies on the financial return of capital invested in PV systems located in different climatic zones in Brazil”, Renewable Energy, 83, 786-798 (2015).
[2] N. S. Lewis, “Toward cost-effective solar energy use”, Science, 315, 798-801 (2007).
[3] S. Li, B. He, J. Xu, H. Lu, J. Jiang, J. Zhu, Z. Kan, L. Zhu, F. Wu, “Highly efficient inverted perovskite solar cells incorporating P3CT-Rb as hole transport layer to achieve large open circuit voltage of 1.144 V”, Nanoscale, 12, 3686-3691 (2020).
[4] C. Luo, G. Li, L. Chen, J. Dong, M. Yu, C. Xu, Y. Yao, M. Wang, Q. Song, S. Zhang, “Passivation of defects in inverted perovskite solar cells using an imidazolium-based ionic liquid”, Sustainable Energy Fuels, 4, 3971–3978 (2020).
[5] H. Peng, W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Zhou, Z. Bian, C. Huang, “Solution processed inorganic V2Ox as interfacial function materials for inverted planar-heterojunction perovskite solar cells with enhanced efficiency”, Nano Research, 9, 2960-2971 (2016).
[6] V. Gonzalez-Pedro, E. J. Juarez-Perez, Waode-Sukmawati A., Eva M. Barea, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, “General Working Principles of CH3NH3PbX3 Perovskite Solar Cells”, Nano Lett., 14, 888–893 (2014).
[7] H. S. Jung, N. G. Park, “Perovskite Solar Cells: From Materials to Devices”, Small, 11, 10-25 (2014).
[8] Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, Luis M. Pazos, D. Credgington, F. Hanusch, T. Bein, Henry J. Snaith,Richard H. Friend, “Bright light-emitting diodes based on organometal halide perovskite”, Nature Nanotechnology, 9, 687–692 (2014).
[9] J. Wang, N. Wang, Y. Jin, J. Si, Z. -K. Tan, H. Du, L. Cheng, X. Dai, S. Bai, H. He, Z. Ye, M. L. Lai, Richard H. Friend, W. Huang, “Interfacial Control Toward Efficient and Low-Voltage Perovskite Light-Emitting Diodes”, Adv. Material, 27, 2311-2316 (2015).
[10] S. Mathews, R. Ramesh, T. Venkatesan, J. Benedetto, “Ferroelectric Field Effect Transistor Based on Epitaxial Perovskite Heterostructures”, Science, 276, 238-240 (1997).
[11] C. R. Kagan, D. B. Mitzi, C. D. Dimitrakopoulos, “Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors”, Science, 286, 945-947 (1999).
[12] W. Sun, Y. Liu, G. Qu, Y. Fan, W. Dai, Y. Wang, Q. Song, J. Han, S. Xiao, “Lead halide perovskite vortex microlasers”, Nature Communications, 11, 4862 (2020).
[13] https://www.nrel.gov/pv/cell-efficiency.html.
[14] L. Łukasiak, A. Jakubowski, “History of Semiconductors”, Journal of telecommunications and information technology, 1 (2010).
[15] D. M. Chapin, C. S. Fuller, G. L. Pearson, “A new silicon p‐n junction photocell for converting solar radiation into electrical power”, Journal of Applied Physics, 25, 676-677 (1954).
[16] M. D. Graef, M. M. Henry, “Structure of Materials: An Introduction to Crystallography, Diffraction and Symmetry”, Cambridge University Press, 2007.
[17] Z. Yi, N. H. Ladi, X. Shai, H. Li, Y. Shen, M. Wang, “Will organic–inorganic hybrid halide lead perovskites be eliminated from optoelectronic applications?”, Nanoscale Adv., 1, 1276-1289 (2019).
[18] A. Kojimaa, K. Teshima, T. Miyasaka, Y. Shiraia, “Novel Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-halide Compounds (2)”, Meeting Abstracts, 397 (2006).
[19] A. Kojimaa, K. Teshima, T. Miyasaka, Y. Shiraia, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells”, J. AM. CHEM. SOC, 131, 6050–6051 (2009).
[20] H.-S. Kim, C.-R. Lee, J.-H. Im, Ki-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, Robin H.-B., J.-Ho Yum, Jacques E. Moser, M. Grätzel, N.-G. Park, “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%”, Scientific Reports, 2, 591 (2012).
[21] https://www.ossila.com/products/spiro-ometad
[22] H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, “Interface engineering of highly efficient perovskite solar cells”, Science, 345, 542-546 (2014).
[23] J. Cui, H. Yuan, J. Li, X. Xu, Y. Shen, H. Lin, M. Wang “Recent progress in efficient hybrid lead halide perovskite solar cells”, Science and Technology of Advanced Materials, 16, 036004 (2015).
[24] M. Wang, H. Wang, W. Li, X. Hu, K. Sun, Z. Zang, “Defect passivation using ultrathin PTAA layers for efficient and stable perovskite solar cells with a high fill factor and eliminated hysteresis”, J. Mater. Chem. A, 7, 26421–26428 (2019).
[25] L. Xu, M. Qian, Q. Lu, H. Zhang, W. Huang, “Low temperature processed PEDOT:PSS/VOx bilayer for hysteresis-free and stable perovskite solar cells”, Materials Letters, 236, 16-18 (2019).
[26] Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gaobc, J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers”, Energy Environ. Sci., 7, 2619-2623 (2014).
[27] Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, “Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement”, Advanced Materials, 26, 6503-6509 (2014).
[28] M. Liu, M. B. Johnston, H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition”, Nature, 501, 395–398 (2013).
[29] Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, Y. Yang, “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process”, J. Am. Chem. Soc., 136, 622-625 (2014).
[30] U. Kshnan, M. Kaur, M. Kumar, A. Kumar, “Factors affecting the stability of perovskite solar cells: a comprehensive review”, Journal of Photonics for Energy, 9, 201001 (2019).
[31] T. Gatti et al., “The renaissance of fullerenes with perovskite solar cells,” Nano Energy, 41, 84–100 (2017).
[32] I. G. Hill, A. Kahna, Z. G. Soo, R. A. Pascal, “Charge-separation energy in films of π-conjugated organic molecules”, Chemical Physics Letters, 327, 181-188 (2000).
[33] M. Knupfer, “Exciton binding energies in organic semiconductors”, Applied Physics A, 77, 623-626 (2003).
[34] S. B. Rim, R. F. Fink, J. C. Schöneboom, P. Erk, P. Peumans, “Effect of molecular packing on the Exciton diffusion length in organic solar cells”, Applied Physics Letters, 91, 173504 (2007).
[35] B. Leckner, “The spectral distribution of solar radiation at the earth's surface-elements of a model”, Solar energy, 20, 143-150 (1978).
[36] P. Peumans, A. Yakimov, S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells”, Journal of Applied Physics, 93, 3693-3723 (2003).
[37] P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, D. E. Markov, “Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells”, Advanced Materials, 19, 1551-1566 (2007).
[38] H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, M. Heeney, I. McCulloch, J. Nelson, D. D. C. Bradley, J. R. Durrant, “Charge Carrier Formation in Polythiophene/Fullerene Blend Films Studied by Transient Absorption Spectroscopy”, Journal of the American Chemical Society, 130, 3030-3042 (2008).
[39] J. L. Brédas, J. E. Norton, J.e Cornil, V. Coropceanu, “Molecular Understanding of Organic Solar Cells: The Challenges”, Accounts of chemical research, 42, 1691-1699 (2009).
[40] A. Jannat, M. F. Rahman, M. S. H. khan, “A Review Study of Organic Photovoltaic Cell”, Int. J. Sci. Eng. Res., 4, 1 (2013).
[41] B. P. Rand, J. Genoe, P. Heremans, J. Poortmans, “Solar cells utilizing small molecular weight organic semiconductors”, Progress in Photovoltaics, 15, 659-676 (2007).
[42] C. Kulshreshtha, J. W. Choi, J.-k. Kim, W. S. Jeon, M. C. Suh, Y. Park, J. H. Kwon, “Open-circuit voltage dependency on hole-extraction layers in planar heterojunction organic solar cells”, Applied Physics Letters, 99, 023308 (2011).
[43] B. P. Rand, D. P. Burk, S. R. Forrest, “Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells”, Phys. Rev. B, 75, 115327 (2007).
[44] K. L. Chopra, P. D. Paulson, V. Dutta, “Thin-film solar cells: an overview”, Progress in Photovoltaics, 12, 69-92 (2004).
[45] B. Qi, J. Wang, “Fill factor in organic solar cells”, Physical Chemistry Chemical Physics, 15, 8972-8982 (2013).
[46] A. Moliton, J. -M. Nunzi, “How to model the behaviour of organic photovoltaic cells”, Polym. Int., 55, 583-600 (2006).
[47] C. M. Proctor, T. -Q. Nguyen, “Effect of leakage current and shunt resistance on the light intensity dependence of organic solar cells, Appl. Phys. Lett., 106, 083301 (2015).
[48] N. Li, B. E. Lassiter, R. R. Lunt, G. Wei, S. R. Forrest, “Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cells”, Appl. Phys. Lett., 94, 023307 (2009).
[49] M. K. Assadia, S. Bakhodaa, R. Saidur, H. Hanaei, “Recent progress in perovskite solar cells”, Renewable and Sustainable Energy Reviews, 81, 2812-2822 (2018).
[50] Q. Fu, X. Tang, B. Huang, T. Hu, L. Tan, L. Chen, Y. Chen, “Recent Progress on the Long-Term Stability of Perovskite Solar Cells”, Advanced Science, 5, 1700387 (2018).
[51] N. Torabi, A. Behjat, Y. Zhou, P. Docampo, R. J. Stoddard, H. W. Hillhouse, T. Ameri, “Progress and challenges in perovskite photovoltaics from single- to multi-junction cells”, Materials Today Energy, 12, 70-94 (2019).
[52] C. -W. Chen, H.-W. Kang, S. -Y. Hsiao, P. -F. Yang, K. -M. Chiang, H. -W. Lin, “Efficient and Uniform Planar-Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition”, Adv. Mater., 26, 6647–6652 (2014).
[53] A. Ng, Z. Ren, Q. Shen, S. H. Cheung, H. C. Gokkaya, G. Bai, J. Wang, L. Yang, S. K. So, A. B. Djurišić, W. W.-f. Leung, J. Hao, W. Kin Chan, C. Surya, “Efficiency enhancement by defect engineering in perovskite photovoltaic cells prepared by evaporated PbI2/CH3NH3I multilayers”, J. Mater. Chem. A, 3, 9223-9231 (2015).
[54] S. -Y. Hsiao, H. -L. Lin, W. -H. Lee, W. -L. Tsai, K. -M. Chiang, W. -Y. Liao, C. Zheng, R. Wu, C. -Y. Chen, H. -W. Lin, “Efficient All-Vacuum Deposited Perovskite Solar Cells by Controlling Reagent Partial Pressure in High Vacuum”, Adv. Mater., 28, 7013-7019 (2016).
[55] M. Roß, Lidón G. -E., Amran A. -A., P. Tockhorn, M. Jošt, B. Rech, S. Albrecht, “Co-Evaporated p‑i‑n Perovskite Solar Cells beyond 20% Efficiency: Impact of Substrate Temperature and Hole-Transport Layer”, Appl. Mater. Interfaces, 12, 39261-39272 (2020).

QR CODE