簡易檢索 / 詳目顯示

研究生: 李忠諭
Chung-Yu Lee
論文名稱: 探討化學機械拋光用於改善Al0.5CoCrFeNi2高熵合金薄膜之平坦度
Study on chemical mechanical polishing for planarizing the surface of Al0.5CoCrFeNi2 high entropy thin films
指導教授: 陳士勛
Shih-Hsun Chen
口試委員: 丘群
Chun Chiu
李紹先
Shao-Sian Li
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 92
中文關鍵詞: 封裝技術擴散阻障層高熵合金Al0.5CoCrFeNi2化學機械拋光
外文關鍵詞: Packaging technology, Diffusion barrier layer, High entropy alloy, Al0.5CoCrFeNi2, Chemical mechanical polishing
相關次數: 點閱:272下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著科技日新月異,積體電路日漸變小以及隨著電子元件尺寸的微小化,封裝技術中三維整合電路利用晶體的堆疊方式達到封裝尺寸微小化之目的。而製程中必須透過Sn銲料將電子元件以及待組裝之基板互相連接在一起,在長期熱時效的作業中將會導致Cu與Sn銲料互相擴散,導致界面處會形成脆性之金屬間化合物,並降低銲接點的可靠性。
為了降低金屬間化合物形成,在本實驗中使用高熵合金薄膜作為擴散阻障層,若將其用運用在半導體或各種製程的匹配性,薄膜的平坦度是元件堆疊的基本要求。而高熵合金系統中以過渡金屬元素所組成之系統最為成熟,本實驗選用相穩定高且呈現單一FCC單一固溶體結構之Al0.5CoCrFeNi2高熵合金薄膜。
然而在不同工作參數下以濺鍍法製備之Al0.5CoCrFeNi2高熵合金薄膜,會具備不同結晶性、機械性質及表面粗糙度,且根據擴散阻障層的條件,薄膜與接觸材料的界面平整性與粗糙度會對結構及電性產生影響,因此本實驗將Al0.5CoCrFeNi2高熵合金薄膜進行化學機械拋光,達到表面平坦化,而化學機械拋光是一種結合化學反應以及機械研磨來達到晶圓平坦化的製程。
首先確認Al0.5CoCrFeNi2高熵合金薄膜適合在何種拋光液中進行實驗,透過兩款拋光液進行高熵合金薄膜化學機械拋光,結果顯示,含有HNO3氧化劑之ESA220的平坦化效果優於含有FeCl3溶液之ESA207,表面粗糙度下降幅度較高,接著進行拋光時間參數之設計,於拋光時間5分鐘,得到本實驗最大之材料移除率,然而在固定ESA220拋光液、下壓力50 g/cm2、轉速40 rpm、拋光時間5分鐘,得到下降幅度最多的最佳表面粗糙度2.137 nm,而在本實驗結晶性佳之薄膜擁有較佳之機械性質,在進行化學機械拋光後,獲得最高之表面粗糙度下降值20%。


With the rapid development of technology, integrated circuits are getting smaller, the three-dimensional integrated circuit in packaging technology uses the stacking method of crystals to achieve the purpose of miniaturizing the package size. In the process, the electronic components and the substrate should be connected to each other through soldering. During the long-term thermal aging operation, copper and solder will diffuse together, resulting in the formation of intermetallic compounds at the interface and reduce the reliability of solder joints.
In order to reduce the intermetallic compounds, high-entropy alloy film has been used as a diffusion barrier layer in this experiment. If it is used in semiconductors industry, the flattened of the film is a basic requirement for device stacking. In this experiment, the Al0.5CoCrFeNi2 thin film with high phase stability and FCC single solid solution structure was selected.
However, Al0.5CoCrFeNi2 thin films prepared by sputtering under different working parameters, they have different crystallinities, mechanical properties and surface roughness, according to the conditions of the diffusion barrier layer, the interface between the thin film and the contact material must be flat, roughness will affect the structure and electrical properties, so in this experiment, chemical mechanical polishing is used to achieve surface flattening.
First, confirm which slurry is suitable for Al0.5CoCrFeNi2 thin film, the results show that the flattening effect of ESA220 containing HNO3 oxidant is better than ESA207 slurry containing FeCl3 solution. When the polishing time is 5 minutes, and the maximum material removal rate in this experiment is obtained. At 40 rpm, down force 50 g/cm2, the result shows the optimized surface roughness Sa 2.137 nm, and the thin film with good crystallinity has better mechanical properties that obtains the highest surface roughness decrease by 20% after chemical mechanical polishing.

目錄 摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第1章 前言 1 第2章 文獻回顧 3 2.1 電子封裝 3 2.1.1 發展背景 3 2.1.2 封裝技術 4 2.1.3 封裝製程之界面反應 5 2.2 高熵合金 7 2.2.1 高熵合金的特性 8 2.2.2 AlxCoCrFeNi高熵合金系統介紹 12 2.2.3 高熵合金的應用 18 2.3 化學機械拋光 (Chemical Mechanical Polishing, CMP) 19 2.3.1 化學機械拋光製程技術 19 2.3.2 化學機械拋光機制 22 2.3.3 拋光墊 23 2.3.4 拋光液 25 2.5 文獻回顧總結 27 第3章 實驗方法 29 3.1 實驗流程 29 3.1.1 實驗參數 31 3.1.2 Al0.5CoCrFeNi2高熵合金薄膜化學機械拋光之流程圖 32 3.2 製程設備 33 3.2.1 射頻濺鍍機 33 3.2.2 化學機械拋光機台 34 3.2.3 酸鹼值檢測機 35 3.2.4 電熱板攪拌器 36 3.3 實驗耗材 37 3.3.1 拋光墊 37 3.3.2 拋光液 38 3.3.3 鑽石修整器 38 3.3.4 陶瓷工作環 39 3.3.5 固態蠟 39 3.4 實驗分析儀器 40 3.4.1 X射線繞射分析儀(X-Ray Diffraction, XRD) 40 3.4.2場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 41 3.4.3奈米壓痕機械性質分析儀(Nano indenter) 42 3.4.4表面干涉儀(Talysurf CCI-Lite, CCI) 43 3.4.5 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 44 第4章 結果與討論 45 4.1高熵合金薄膜晶體結構與材料性質分析 45 4.1.1 晶體結構分析-XRD 45 4.1.2 薄膜微觀結構分析 47 4.1.3 機械性質分析 50 4.2 高熵合金薄膜之表面粗糙度分析儀器比較 52 4.2.1 表面干涉儀之表面粗糙度分析 (Talysurf CCI-Lite) 53 4.2.2 奈米壓痕之表面粗糙度分析 (Nanoindenter) 54 4.3 高熵合金薄膜之化學機機械拋光 56 4.3.1 拋光液分析 56 4.3.2 拋光時間分析 62 4.3.3 材料移除率分析 64 4.3.4 表面粗糙度分析 65 4.4 綜合討論 71 第5章 結論與未來展望 74 5.1 結論 74 5.2 未來展望 75 參考文獻 76

[1] K.-N.J.M.R. Tu, Reliability challenges in 3D IC packaging technology, 51 (2011) 517-523.
[2] S. Annuar, R. Mahmoodian, M. Hamdi, K.-N.J.S. Tu, T.o.a. MaTerialS, Intermetallic compounds in 3D integrated circuits technology: a brief review, 18 (2017) 693-703.
[3] K.-N. Chen, K.-N.J.M.B. Tu, Materials challenges in three-dimensional integrated circuits, 40 (2015) 219-222.
[4] K.-N. Tu, H.-Y. Hsiao, C.J.M.R. Chen, Transition from flip chip solder joint to 3D IC microbump: Its effect on microstructure anisotropy, 53 (2013) 2-6.
[5] C.R. Kao, A.T. Wu, K.-N. Tu, Y.-S.J.M.R. Lai, Reliability of micro-interconnects in 3D IC packages, 1 (2013) 1.
[6] C.-M. Liu, H.-W. Lin, Y.-S. Huang, Y.-C. Chu, C. Chen, D.-R. Lyu, K.-N. Chen, K.-N.J.S.r. Tu, Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu, 5 (2015) 1-11.
[7] Y.-L. Shen, G. Flores, J.J.M.R. Guthrie, Numerical study of microbump failure in 3D microelectronic structures, 61 (2016) 48-55.
[8] Y.-A. Shen, S.-W. Chen, H.-Z. Chen, C.-M. Chang, Y.-H.J.A.S.S. Ouyang, Extremely thin interlayer of multi-element intermetallic compound between Sn-based solders and FeCoNiMn high-entropy alloy, 558 (2021) 149945.
[9] A. Yu, J.H. Lau, S.W. Ho, A. Kumar, W.Y. Hnin, D.-Q. Yu, M.C. Jong, V. Kripesh, D. Pinjala, D.-L. Kwong, Study of 15µm pitch solder microbumps for 3D IC integration, in: 2009 59th Electronic Components and Technology Conference, IEEE, 2009, pp. 6-10.
[10] W. Peng, E. Monlevade, M.E.J.M.R. Marques, Effect of thermal aging on the interfacial structure of SnAgCu solder joints on Cu, 47 (2007) 2161-2168.
[11] R.J.A.M. Balluffi, The supersaturation and precipitation of vacancies during diffusion, 2 (1954) 194-202.
[12] T.T. Kyaw, P. Tunthawiroon, K. Kanlayasiri, K. Yamanaka, A.J.I. Chiba, A study on wettability and formation of intermetallic phase between Co–Cr–Mo alloy and Sn-Solder used as a potential under bump metallization for flip-chip packages, 125 (2020) 106875.
[13] T.-C. Chiu, K. Zeng, R. Stierman, D. Edwards, K. Ano, Effect of thermal aging on board level drop reliability for Pb-free BGA packages, in: 2004 Proceedings. 54th Electronic Components and Technology Conference (IEEE Cat. No. 04CH37546), IEEE, 2004, pp. 1256-1262.
[14] M. Islam, Y.J.M.S. Chan, E. B, Interfacial reactions of Sn–Cu solder with Ni/Au surface finish on Cu pad during reflow and aging in ball grid array packages, 117 (2005) 246-253.
[15] Y.-W. Yen, K.-S. Chao, S.-M. Fu, Interfacial Reactions between the Sn-9Zn Solder and Au/Ni/SUS304 Multi-layer Substrate, in: Proceedings of the World Congress on Engineering, 2011.
[16] Y.-A. Shen, H.-M. Hsieh, S.-H. Chen, J. Li, S.-W. Chen, H.J.A.S.S. Nishikawa, Investigation of FeCoNiCu properties: Thermal stability, corrosion behavior, wettability with Sn-3.0 Ag-0.5 Cu and interlayer formation of multi-element intermetallic compound, 546 (2021) 148931.
[17] K.-H. Huang, J.J.H.N.T.H.U. Yeh, A study on the multicomponent alloy systems containing equal-mole elements, 1 (1996).
[18] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y.J.A.e.m. Chang, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, 6 (2004) 299-303.
[19] Y.J.A.C.S.M. Jien-Wei, Recent progress in high entropy alloys, 31 (2006) 633-648.
[20] J.-W. Yeh, S.-K. Chen, Y.-L. Chen, Novel alloy concept, challenges and opportunities of high-entropy alloys, in: Frontiers design materials, CRC Press Boca Raton, 2007, pp. 31-47.
[21] D.B. Miracle, O.N.J.A.M. Senkov, A critical review of high entropy alloys and related concepts, 122 (2017) 448-511.
[22] Y. Zhang, Y. Zhou, X. Hui, M. Wang, G.J.S.i.C.S.G.P. Chen, Mechanics, Astronomy, Minor alloying behavior in bulk metallic glasses and high-entropy alloys, 51 (2008) 427-437.
[23] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P.J.P.i.m.s. Lu, Microstructures and properties of high-entropy alloys, 61 (2014) 1-93.
[24] B.S. Murty, J.-W. Yeh, S. Ranganathan, P. Bhattacharjee, High-entropy alloys, Elsevier, 2019.
[25] M.-H. Tsai, J.-W.J.M.R.L. Yeh, High-entropy alloys: a critical review, 2 (2014) 107-123.
[26] O.N. Senkov, S.V. Senkova, C. Woodward, D.B.J.A.M. Miracle, Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis, 61 (2013) 1545-1557.
[27] H.-P. Chou, Y.-S. Chang, S.-K. Chen, J.-W.J.M.S. Yeh, E. B, Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤ x≤ 2) high-entropy alloys, 163 (2009) 184-189.
[28] C. Zhang, F. Zhang, H. Diao, M.C. Gao, Z. Tang, J.D. Poplawsky, P.K.J.M. Liaw, Design, Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys, 109 (2016) 425-433.
[29] Y.-F. Kao, T.-J. Chen, S.-K. Chen, J.-W.J.J.o.A. Yeh, Compounds, Microstructure and mechanical property of as-cast,-homogenized, and-deformed AlxCoCrFeNi (0≤ x≤ 2) high-entropy alloys, 488 (2009) 57-64.
[30] W.-R. Wang, W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C.-H. Lai, J.-W.J.I. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, 26 (2012) 44-51.
[31] R. Li, P. Liaw, Y.J.M.S. Zhang, E. A, Synthesis of AlxCoCrFeNi high-entropy alloys by high-gravity combustion from oxides, 707 (2017) 668-673.
[32] K. Osintsev, S. Konovalov, V. Gromov, I. Panchenko, X.J.M.T.P. Chen, Phase composition prediction of Al-Co-Cr-Fe-Ni high entropy alloy system based on thermodynamic and electronic properties calculations, 46 (2021) 961-965.
[33] W. Liao, S. Lan, L. Gao, H. Zhang, S. Xu, J. Song, X. Wang, Y.J.T.S.F. Lu, Nanocrystalline high-entropy alloy (CoCrFeNiAl0. 3) thin-film coating by magnetron sputtering, 638 (2017) 383-388.
[34] N.A. Khan, B. Akhavan, C. Zhou, H. Zhou, L. Chang, Y. Wang, Y. Liu, M.M. Bilek, Z.J.S. Liu, C. Technology, High entropy nitride (HEN) thin films of AlCoCrCu0. 5FeNi deposited by reactive magnetron sputtering, 402 (2020) 126327.
[35] J.-T. Liang, K.-C. Cheng, Y.-C. Chen, S.-M. Chiu, C. Chiu, J.-W. Lee, S.-H.J.S. Chen, C. Technology, Comparisons of plasma-sprayed and sputtering Al0. 5CoCrFeNi2 high-entropy alloy coatings, 403 (2020) 126411.
[36] R. Li, M. Li, C. Jiang, B. Qiao, W. Zhang, J.J.J.o.A. Xu, Compounds, Thermal stability of AlCrTaTiZrMo-nitride high entropy film as a diffusion barrier for Cu metallization, 773 (2019) 482-489.
[37] 陳靜雯, 潘扶民, 利用電漿輔助原子層沉積法沉積之氮化鉭擴散阻障層及其與銅金屬之附著性研究, in, 2007.
[38] X. Hu, Z. Song, W. Liu, F. Qin, Z. Zhang, H.J.A.s.s. Wang, Chemical mechanical polishing of stainless steel foil as flexible substrate, 258 (2012) 5798-5802.
[39] W.-E. Fu, T.-Y. Lin, M.-K. Chen, C.-C.A.J.T.S.F. Chen, Surface qualities after chemical–mechanical polishing on thin films, 517 (2009) 4909-4915.
[40] Y. Zhou, G. Pan, X. Shi, L. Xu, C. Zou, H. Gong, G.J.A.s.s. Luo, XPS, UV–vis spectroscopy and AFM studies on removal mechanisms of Si-face SiC wafer chemical mechanical polishing (CMP), 316 (2014) 643-648.
[41] J. Luo, D.A.J.I.t.o.s.m. Dornfeld, Material removal mechanism in chemical mechanical polishing: theory and modeling, 14 (2001) 112-133.
[42] Z. Zhang, J. Liu, W. Hu, L. Zhang, W. Xie, L.J.J.o.M.P. Liao, Chemical mechanical polishing for sapphire wafers using a developed slurry, 62 (2021) 762-771.
[43] D. Zhang, J. Liu, Y. Chen, M. Wang, X.J.M.E. Ge, Investigation on S-136 steel surface planarization by chemical mechanical polishing, 134 (2015) 47-53.
[44] Q. Luo, S. Ramarajan, S.J.T.s.f. Babu, Modification of the Preston equation for the chemical–mechanical polishing of copper, 335 (1998) 160-167.
[45] D. Zhao, X.J.F. Lu, Chemical mechanical polishing: theory and experiment, 1 (2013) 306-326.
[46] G.P. Muldowney, D.B.J.M.O.P.L. James, Characterization of CMP pad surface texture and pad-wafer contact, 816 (2004).
[47] 蔡進晃, 鑽石修整器修整特性對化學機械研磨製程的細微刮傷缺陷之影響, (2013).
[48] H. Kim, S. Hong, C. Shin, Y. Jin, D.H. Lim, J.-y. Kim, H. Hwang, T.J.W. Kim, Investigation of the pad-conditioning performance deterioration in the chemical mechanical polishing process, 392 (2017) 93-98.
[49] M. Krishnan, J.W. Nalaskowski, L.M.J.C.r. Cook, Chemical mechanical planarization: slurry chemistry, materials, and mechanisms, 110 (2010) 178-204.
[50] S. Babu, Advances in chemical mechanical planarization (CMP), Woodhead Publishing, 2016.
[51] J. Su, Y. Wang, Z. Wang, Y. Li, L. Ma, M.J.J.o.T.I.o.E.S.E. Pang, Study on Chemical Action Mechanism of Ferric Chloride-Based Polishing Slurry in CMP of 304 Stainless Steel, 102 (2021) 175-182.
[52] Y. Zhang, C. Yang, L. Zhao, J.J.I.J.o.E.S. Zhang, Study on the Electrochemical Corrosion Behavior of 304 Stainless Steel in Chloride Ion Solutions, 16 (2021) 210251.

QR CODE