簡易檢索 / 詳目顯示

研究生: 郭柏成
Po-Cheng Kuo
論文名稱: 以高通量計算方法預測鋁-鉻-鐵-鈦-釩高熵合金之體心立方固溶相形成區域及其顯微結構與硬度之研究
Study on Single BCC Phase Formation Region for the Al-Cr-Fe-Ti-V High-Entropy Alloys by High-Throughput Computational (HTC) Method
指導教授: 顏怡文
Yee-Wen Yen
口試委員: 顏怡文
Yee-Wen Yen
施劭儒
Shao-Ju Shih
黃爾文
E-Wen Huang
陳志銘
Chih-Ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 109
中文關鍵詞: 高熵合金相圖計算高通量技術硬度密度
外文關鍵詞: High-Entropy Alloy, CALPHAD, HTC, Hardness, Density
相關次數: 點閱:217下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為了加速開發多元素為主的高熵合金,本研究以相圖計算方法(CALPHAD)輔以高通量技術(High-throughput computation),以Lever rule及Scheil model模擬Al-Cr-Fe-Ti-V輕量高熵合金。分析計算結果,V元素有助於合金BCC相的生成,Fe和Ti則易使介金屬化合物的析出。在未來應用的本考量下,自模擬結果中挑選六組合金實驗,預期皆為BCC單相。
將電弧熔煉法製備的鑄態合金,及1100℃高溫固溶處理的試片,以X光繞射儀(XRD)和場發射電子微探儀(FE-EPMA),檢視與驗證模擬計算之準確性。從各項結果分析,本研究中六個合金都是以BCC相為主,因實驗誤差而導致部分合金有Laves C14的析出。整體來說,實驗的結果與計算模擬相當吻合。密度測量結果說明六組合金皆屬於輕量高熵合金,隨著Ti和V的添加有助於降低整體密度。本研究中合金的硬度皆比傳統鈦合金來的高,有Laves_C14析出的合金可明顯提升其硬度,此外藉由Ti元素比例的增加也有正面的影響。


To accelerate the development of high-entropy alloy, this study uses the Calculation of Phase Diagram method (CALPHAD) supplemented by the high-throughput computation (HTC), with Lever rule and Scheil model to simulate Al-Cr-Fe-Ti-V Light-Weight High-Entropy Alloy. According to the analysis of calculation results, Vanadium contributes to the formation of BCC phase, and Fe and Ti tend to cause the precipitation of intermetallic compounds. Under the consideration of the application cost, the Alloy 1~6 are selected from the simulation results, which are expected to be BCC single-phase.
The as-cast alloys prepared by arc melter and the alloys treated at 1100℃ were examined by the X-ray Diffractometer (XRD) and Field-Emission Electron Probe Microanalyzer (FE-EPMA). From the analysis of results, the six alloys are mainly the BCC phase, and Laves C14 precipitates in some alloys due to experimental deviation. Overall, the experimental results are in good agreement with the computational simulation. Density results indicate that all six alloys are Light-Weight High-Entropy Alloy. The addition of Ti and V, it reduces the overall density. In this study, all hardness of alloys is higher than the traditional titanium alloy. The alloy precipitated with the Laves C14 phase can significantly increase its hardness. Also, the increase in the proportion of Ti element has a positive effect on hardness.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 X 第一章 簡介 1 第二章 文獻回顧 2 2.1 高熵合金 2 2.1.1高熵概念的發展 2 2.1.2 高熵合金 3 2.1.3 高熵合金的四大核心效應 5 2.1.3.1 高熵效應 (High-Entropy Effect) 5 2.1.3.2 嚴重晶格扭曲效應 (Severe-Lattice-Distortion Effect) 7 2.1.3.3 遲緩擴散效應 (Sluggish Diffusion Effect) 9 2.1.3.4 雞尾酒效應 (Cocktail Effect) 10 2.1.4 高熵合金中的評估參數 11 2.2 CALPHAD (CALculation of PHAse Diagram) method 19 2.2.1 CALPHAD在高熵合金上的應用 21 2.2.2 Pandat軟體 24 2.2.3 高通量計算 (High-Throughput Computational Method) 27 第三章 實驗方法 28 3.1 實驗流程 28 3.2 High-Throughput Computational (HTC) Method 29 3.3 合金比例 32 3.4 合金製備 33 3.5 高溫固溶處理 34 3.6 X-ray繞射分析 (XRD) 35 3.7電場發射槍電子微探儀 (FE-EPMA) 35 3.8 合金密度 35 3.6 硬度分析 37 第四章 結果與討論 38 4.1 高通量計算模擬結果 (HTC) 38 4.1.1 Lever Rule 38 4.1.2合金挑選 44 4.1.3 Scheil Model 47 4.2 合金組成及微結構 51 4.2.1 合金1 (Al35Cr30Fe25Ti5V5) 51 4.2.2 合金2 (Al35Cr25Fe25Ti10V5) 55 4.2.3 合金3 (Al35Cr20Fe25Ti15V5) 59 4.2.4 合金4 (Al35Cr15Fe25Ti20V5) 64 4.2.5 合金5 (Al35Cr25Fe5Ti10V25) 69 4.2.6 合金6 (Al35Cr10Fe5Ti15V35) 73 4.3 合金密度結果 77 4.4 合金硬度結果 79 第五章 結論 80 Reference 81 附件 87 附件一 篩選後在900℃能形成BCC單相之合金 87 附件二 以Scheil model計算Al-Cr-Fe-Ti-V合金凝固時相組成 92

1. G.L. Chen, C.T. Liu, Int. Mater. Rev. 46, 253-270 (2001).
2. J.M. Song, C.F. Huang, H.Y. Chuang, J. Electron. Mater. 35, 2154-2163 (2006).
3. C.Y. Hsu, J.W. Yeh, S.K. Chen, T.T. Shun, Metall. Mater. Trans. A 35, 1465-1469 (2004).
4. P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Adv. Eng. Mater. 6, 74-78 (2004).
5. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299-303 (2004).
6. T.K. Chen, T.T. Shun, J.W. Yeh, M.S. Wong, Surf. Coat. Technol. 188, 193-200 (2004).
7. Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh, H.C. Shih, Corros. Sci. 47, 2257-2279 (2005).
8. C.J. Tong, M.R. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, S.Y. Chang, Metall. Mater. Trans. A 36, 1263-1271 (2005).
9. M.R. Chen, S.J. Lin, J.W. Yeh, M.H. Chuang, S.K. Chen, Y.S. Huang., Metall. Mater. Trans. A 37, 1363-1369 (2006).
10. C.P. Lee, C.C. Chang, Y.Y. Chen, J.W. Yeh, H.C. Shih, Corros. Sci. 50, 2053-2060 (2008).
11. Y.S. Huang, L. Chen, H.W. Lui, M.H.Cai, J.W. Yeh, Mater. Sci. Eng. A 457, 77-83 (2007).
12. C. Ng, S. Guo, J. Luan, S. Shi, C.T. Liu, Intermetallics 31, 165-172 (2012).
13. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014).
14. Y.D. Wu, Y.H. Cai, T. Wang, J.J. Si, J. Zhu, Y.D. Wang, X.D. Hui, Mater. Lett. 130, 277-280 (2014).
15. M.J. Yao, K.G. Pradeep, C.C. Tasan, D. Raabe, Scr. Mater. 72, 5-8 (2014).
16. B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, Z. Wu, E.P. George, R.O. Ritchie, Nat. Commun. 7, 1-8 (2016).
17. M.H. Tsai, K.C. Chang, J.H. Li, R.C. Tsai, A.H. Cheng, Mater. Res. Lett. 4, 90-95 (2016).
18. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today 19, 349-362 (2016).
19. B. Cantor, Entropy 16, 4749-4768 (2014).
20. Z. Zhang, C.T. Liu, M.K. Miller, X.L. Wang, Y. Wen, T. Fujita, A. Hirata, M. Chen, G. Chen, B.A. Chin, Sci. Rep. 3, 1327 (2013).
21. D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448-511 (2017).
22. J.W. Yeh, S.J. Lin, T.S. Chin, J.Y. Gan, S.K. Chen, T.T. Shun, C.H. Tsau, S.Y. Chou, Metall. Mater. Trans. A 35, 2533-2536 (2004).
23. J.W. Yeh, JOM 65, 1759-1771 (2013).
24. J. Dąbrowa, G. Cieślak, M. Stygar, K. Mroczka, K. Berent, T. Kulik, M. Danielewski, Intermetallics 84, 52-61 (2017).
25. M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2, 107-123 (2014).
26. W. Zhang, P.K. Liaw, Y. Zhang, Sci. China Mater. 61, 2-22 (2018).
27. F. Otto, Y. Yang, H. Bei, E.P. George, Acta Mater. 61, 2628-2638 (2013).
28. Q. He, Y. Yang, Front. Mater. 5, 42 (2018).
29. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A.Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61, 1-93 (2014).
30. K.H. Cheng, C.H. Lai, S.J. Lin, J.W. Yeh, Annales de chimie 31, 723-736 (2006).
31. K.Y. Tsai, M.H. Tsai, J.W. Yeh, Acta Mater. 61, 4887-4897 (2013).
32. B.S. Murty, J.W. Yeh, S. Ranganathan, P. P. Bhattacharjee, High-Entropy Alloys (Elsevier, 2019).
33. D.J. Fisher, High-Entropy Alloys - Microstructures Properties (Trans Tech Publications Ltd, 2015).
34. S. Guo, C.T. Liu, Prog. Nat. Sci.: Mater. Int. 21, 433-446 (2011).
35. X. Yang, Y. Zhang, Mater. Chem. Phys. 132, 233-238 (2012).
36. A. Takeuchi, A. Inoue,. Mater. Sci. Eng. A 304, 446-451 (2001).
37. A. Takeuchi, A. Inoue, Mater. Trans. 46, 2817-2829 (2005).

38. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng. Mater. 10, 534-538 (2008).
39. S. Guo, Q. Hu, C. Ng, C.T. Liu, Intermetallics 41, 96-103 (2013).
40. J.W. Yeh, Ann. Chim. Sci. Mat. 31, 633-648 (2006).
41. H.F. Sheng, M. Gong, L.M. Peng,. Mater. Sci. Eng. A 567, 14-20 (2013).
42. J.H. Zhu, P.K. Liaw, C.T. Liu, Mater. Sci. Eng. A 239, 260-264 (1997).
43. S. Guo, C. Ng, J. Lu, C.T. Liu, J. Appl. Phys. 109, 103505 (2011).
44. Lukas, H.L., S.G. Fries, B. Sundman, Computational Thermodynamics: The Calphad Method (Cambridge University Press, 2007).
45. Y.A. Chang, Metall. Mater. Trans. A 37, 273-305 (2006).
46. S.L. Chen, S. Daniel, F. Zhang, Y.A. Chang, X.Y. Yan, F.Y. Xie, R. Schmid-Fetzer, W.A. Oates, Calphad 26, 175-188 (2002).
47. S.L. Chen, S. Daniel, F. Zhang, Y.A. Chang, W.A. Oates, R. Schmid-Fetzer, J. Phase Equilib. 22, 373-378 (2001).
48. C. Wang, Ph.D. thesis (Universität Stuttgart, 2006).
49. C. Zhang, M.C. Gao, High-Entropy Alloys (Springer, 2016).
50. A. Durga, K.C.H. Kumar, B.S. Murty, Trans. Indian Inst. Met. 65, 375-380 (2012).
51. R. Raghavan, K.C.H. Kumar, B.S. Murty, J. Alloys Compd. 544, 152-158 (2012).
52. C. Zhang, F. Zhang, S.L. Chen, W.S. Cao, JOM 64, 839-845 (2012).
53. F. Zhang, C. Zhang, S.L. Chen, J. Zhu, W.S. Cao, U.R. Kattner, Calphad 45, 1-10 (2014).
54. O.N. Senkov, J.D.Miller, D.B. Miracle, C. Woodward, Calphad 50, 32-48 (2015).
55. O.N. Senkov, J.D.Miller, D.B. Miracle, C. Woodward, Nat. Commun. 6, 1-10 (2015).
56. H.P. Chou, Y.S. Chang, S.K. Chen, J.W. Yeh, Mater. Sci. Eng. B 163, 184-189 (2009).
57. Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, J. Alloys Compd. 488, 57-64 (2009).
58. T.T. Shun, Y.C. Du, J. Alloys Compd. 479, 157-160 (2009).
59. F.J. Wang, Y. Zhang, G.L. Chen, H.A. Davies, J. Eng. Mater. Technol. 131, 034501 (2009).
60. Y.F. Kao, S.K. Chen, T.J. Chen, P.C. Chu, J.W. Yeh, S.J. Lin, J. Alloys Compd. 509, 1607-1614 (2011).
61. C.M. Lin, H.L. Tsai, Intermetallics 19, 288-294 (2011).
62. N. Kumar, Q. Ying, X. Nie, R.S. Mishra, Z. Tang, P.K. Liaw, R.E. Brennan, K.J. Doherty, K.C. Chod, Mater. Des. 86, 598-602 (2015).
63. Y.X. Liu, C.Q. Cheng, J.L. Shang, R. Wang, P. Li, J. Zhao, Trans. Nonferrous Met. Soc. China 25, 1341-1351 (2015).
64. F. He, Z. Wang, Q. Wu, S. Niu, J. Li, J. Wang, C.T. Liu, Scr. Mater. 131, 42-46 (2017).
65. C. Zhang, F. Zhang, H. Diao, M.C.Gao, Z. Tang, J.D. Poplawsky, P.K. Liaw, Mater. Des. 109, 425-433 (2016).
66. Y.A. Chang, S.L. Chen, F. Zhang, X.Y. Yan, F.Y. Xie, R. Schmid-Fetzer, W.A. Oates, Prog. Mater. Sci. 49, 313-345 (2004).
67. W. Cao, S.L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A.Chang, R. Schmid-Fetzer, W.A. Oates, Calphad 33, 328-342 (2009).
68. C. Huang, Y.Z. Zhang, J.Y. Shen, R. Vilar, Surf. Coat. Technol. 206, 1389-1395 (2011).
69. O.N. Senkov, F. Zhang, J.D. Miller, Entropy 15, 3796-3809 (2013).
70. V.T. Nguyen, M. Qian, Z. Shi, T. Song, L. Huang, J. Zou, Intermetallics 101, 39-43 (2018).
71. S. Curtarolo, D. Morgan, K. Persson, J. Rodgers, G. Ceder, Phys. Rev. Lett. 91, 135503 (2003).
72. R.M. Martin, Electronic Structure: Basic Theory Practical Methods (Cambridge University Press, 2004)
73. S. Curtarolo, G.L.W. Hart, M.B. Nardelli, N. Mingo, S. Sanvito, O. Levy, Nat. Mater. 13, 191-201 (2013).
74. D. Morgan, G. Ceder, S. Curtarolo, Meas. Sci. Technol. 16, 296-301 (2004).
75. D. Miracle, B. Majumdar, K. Wertz, S. Gorsse, Scr. Mater. 127, 195-200 (2017).

76. P.K. Sarswat, S. Sarkar, A. Murali, W. Huang, W. Tan, M.L. Free, Appl. Surf. Sci. 476, 242-258 (2019).
77. 王筑萱,以高通量計算方法預測鋁-鈷-鐵-鎳-鈦五元系統之高熵合金形成之點以及其顯微結構、硬度與腐蝕之研究,國立臺灣科技大學碩士論文,2019。
78. D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, J. Tiley, Entropy 16, 494-525 (2014).
79. D.B. Miracle, Mater. Sci. Technol. 31, 1142-1147 (2015).
80. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Intermetallics 18, 1758-1765 (2010).
81. A Stard, E92, Stard Test Method for Vickers Hardness of Metallic Materials, ASTM International, West Conshohocken, PA (2003).
82. M.C. Gao, D.E. Alman, Entropy 15, 4504-4519 (2013).
83. H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, M.C. Gao, J. Alloys Compd. 696, 1139-1150 (2017).
84. A. Abu-Odeh, E. Galvan, T. Kirk, H. Mao, Q. Chen, P. Mason, R. Malak, R. Arróyave, Acta Mater. 152, 41-57 (2018).
85. X. Huang, J. Miao, A.A. Luo, J. Mater. Sci. 54, 2271-2277 (2019).
86. D. Choudhuri, B. Gwalani, S. Gorsse, C.V. Mikler, R.V. Ramanujan, M.A. Gibson, R. Banerjee, Scr. Mater. 127, 186-190 (2017).
87. Y. Dong, K. Zhou, Y. Lu, X. Gao, T. Wang, T. Li, Mater. Des. 57, 67-72 (2014).
88. F. He, Z.J. Wang, S. Niu, Q.F. Wu, J.J. Li, J.C. Wang, C.T. Liu, Y.Y. Dang, J. Alloys Compd. 667, 53-57 (2016).
89. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102, 187-196 (2016).
90. C.M. Lin, C.C. Juan, C.H. Chang, C.W. Tsai, J.W. Yeh, J. Alloys Compd. 624, 100-107 (2015). 
91. R. Feng, M.C. Gao, C. Lee, M. Mathes, T. Zuo, S. Chen, J.A. Hawk, Y. Zhang, P.K. Liaw, Entropy 18, 333 (2016).
92. S.S. Rocha, G.L. Adabo, G.E.P. Henriques, M.A.A. Nóbilo, Braz. Dent. J. 17, 126-129 (2006).
93. C. Machai, D. Biermann, J. Mater. Process. Technol. 211, 1175-1183 (2011).
94. D.J. Abson, F.J. Gurney, Met. Technol. 1, 483-489 (1974).

無法下載圖示 全文公開日期 2025/07/16 (校內網路)
全文公開日期 2025/07/16 (校外網路)
全文公開日期 2025/07/16 (國家圖書館:臺灣博碩士論文系統)
QR CODE