簡易檢索 / 詳目顯示

研究生: 葉東明
Dong-Ming Ye
論文名稱: CPAP離心風機之性能與噪音分析研究
Performance and Noise Study of CPAP Centrifugal Fan
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 陳呈芳
none
莊福盛
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 173
中文關鍵詞: 離心風扇效率計算連續正向氣壓通過氣管之管理儀器阻塞性睡眠呼吸中止症候群
外文關鍵詞: CPAP, OSAS, Centrifugal, Efficiency
相關次數: 點閱:243下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 睡眠的相關的疾病中,以阻塞性睡眠呼吸中止症候群(簡稱OSAS)最為困擾人們的生活,臨床經驗顯示經連續正向氣壓通過氣管之管理儀器CPAP,可以有效治療中重度之OSAS患者,而目前CPAP技術主要是以離心風機來提供穩定氣流及壓力。為了使CPAP離心風機具備高性能、高效率及低噪音特性,本研究首先對市售產品進行數值分析與實驗量測,以確定模擬與實驗結果具一致性,由其實驗結果顯示,模擬與實驗誤差在6%以內;接著對外殼流道進行改善,其改善結果藉由Mock-Up之製作測試之後,可得知其操作點壓力及流量分別上升23.3%及11.1%,且消耗功率瓦特數從12.48(W) 降為11.76(W)。至於噪音改善方面,再藉由增強葉輪的結構剛性及增加外殼阻尼,由頻譜圖得知可使葉片第一特徵頻率下降6dB (A),緊接著加入市售產品之葉輪幾何外型的修改,進行系統化的完整參數分析,舉凡葉片數目、葉片出、入口角度、葉片外型等,探討各個參數對性能的影響,由模擬結果顯示其操作點靜壓、流量及效率分別再度提升5.37%、2.36%與4.21%。歸納來說,本研究之完成可提供在CPAP的設計與開發上全面性地選用高效能、低耗能、低噪音,以滿足設計者之需求,建立一套具系統之分析流程對於提昇CPAP整體性能將有所助益。


    Obstructive Sleep Apnea Syndrome (OSAS) is one of the most disturbing sleep diseases. Previous investigations have demonstrated that continuous positive airway pressure (CPAP) can be helpful for OSAS treatment via delivering steady barometric pressure through trachea. Thus, CPAP machine, powered by a centrifugal fan, is considered as the major instrument for offering appropriate air pressure and flow rate to cure OSAS patient, and becomes the research topic of this work. This work aims to establish a systematic fan design procedure for attaining a low noise, high performance, and efficient CPAP. At first, a commercial product is tested experimentally and simulated numerically. It is illustrated that the deviation between these results is an acceptable 6%, which is sufficient to validate the established CFD model, especially considering the correlated trend between two performance curves. After that, a mock-up with housing modification is fabricated and tested to confirm the enhancement of operation condition’s air pressure and flow rate by 23.3% and 11.1%. In addition, the power consumption is reduced from 12.48 to 11.76 W. Also, a 6 dB reduction on the first blade passage frequency is achieved by imposing extra damping system and reinforcing the rotor’s construction. Thereafter, a thorough parametric study on the rotor geometry is executed to examine the corresponding influence on the CPAP performance. The parameters considered here include blade number and geometry, such as its shape, inlet, and outlet angles. In conclusion, the static pressure, flow rate, and efficiency at the operation point are increased further by 5.37%, 2.36%, and 4.21%, respectively.

    摘要 I Abstract II 致謝 III 目錄 IV 圖索引 VIII 表索引 XI 符號索引 XII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 8 1.2.1阻塞性呼吸中止症 8 1.2.2 離心式風機 10 1.2.3 流場數值模擬分析 18 1.3 研究動機與方法 20 第二章 CPAP簡介與性能測試 25 2.1 CPAP構造 26 2.2 風扇設計 28 2.2.1 離心風機之葉輪設計 33 2.2.2 風機外殼設計 35 2.3 實驗設備及儀器 37 第三章 數值方法 43 3.1 流場統御方程式 44 3.2 紊流模式 46 3.2.1 k-ε紊流方程式 47 3.2.2 紊流模式之壁面處理方式 49 3.3 邊界條件設定 54 3.4 數值計算方法 55 3.4.1求解流程 56 3.4.2離散方法 57 3.4.3 速度與壓力耦合 65 3.5 網格品質 69 第四章 原始風機的模擬分析與實驗比對 72 4.1 網格的建立 72 4.2 性能曲線模擬與驗証 74 4.3 原始產品流場分析 78 4.3.1 葉輪流場分析 78 4.3.2 圓形流道流場分析 82 4.4 原始產品之流場缺失與改善方案 93 第五章 CPAP離心風機之改良研究與性能分析 104 5.1 風機性能改善方案與數值性能計算 104 5.2 去除下流道離心風機之流場分析 109 5.2.1 葉輪流場分析 111 5.2.2 圓形流道流場分析 114 5.2.3 風機性能實驗與模擬驗証 125 5.3 風機噪音頻譜分析與自然頻率模擬之結果 126 5.3.1噪音頻譜分析 127 5.3.2 自然頻率模擬與結構改良之結果分析 132 5.3.3內部導流及結構之改善結果 141 第六章 葉輪之改良研究 147 6.1 葉片數目 147 6.2 葉片出、入口角度 150 6.3 翼形葉片 151 6.4 整體改善結果 160 第七章 結論與建議 162 7.1 結論 162 7.2 建議 166 參考文獻 168

    [1] 行政院主計處,健康安全調查報告,2005。http://win.dgbas.gov.tw/dgbas03/ca/society/Health-94/2-1.htm。
    [2] 李飛鵬,淺談睡眠呼吸中止症,臺北醫學大學健康快遞電子報,
    醫療保健室,http://he.tmu.edu.tw/200511/9411essay05.htm,2005。
    [3] 譚慶鼎,談打鼾與阻塞型睡眠呼吸中止症候群,臺大醫院耳鼻喉
    部,http://w3.mc.ntu.edu.tw/department/ent/tan/1.html。
    [4] 陳濘宏,阻塞性睡眠呼吸中止症候群,台灣醫學9卷3期,pp. 361-366,2005年5月。
    [5] Bowerman, D. G. and Acosta, A., “Effect of the Volume on Performance of a Centrifugal Pump Impeller,” Transaction of ASME, Vol. 79, pp. 1057-1069, 1957.
    [6]Gardow, E. B., “On the Relationship between Impeller Exit Velocity Distribution and Blade Channel Flow in a Centrifugal Fan”, Ph.D. Thesis, State University of New York at Buffalo, Feb. 1968.
    [7] Leidel, W., “Einfluss Von Zungenabstand and Zungenradius auf Kennlinie und Gerausch eines Radial Ventilators ”, DLR-FB, pp. 61-69, 1969.
    [8] Lin, S. C., “A Novel F-C Centrifugal Fan Design for Improved Performance,” Department of Mechanical Engineering, Technical Report, Tennessee Technological University, 1982.
    [9] Wright, T., “Centrifugal Fan Performance with Inlet Clearance,” Journal of Engineering for Gas Turbines and Power, Vol. 106, pp. 906-912, 1984.
    [10] Morinushi, K “The Influence of Geometric Parameters on F-C Centrifugal Fan Noise,” Journal of Vibration, Acoustic, Stress, and Reliability in Design, Vol. 109, pp. 227-234, 1987.
    [11] 吳慶財,“前傾式離心風機的實驗研究”,台灣科技大學機械工程技術研究所碩士論文,1993年。
    [12] Liu, C. H., Vafidis, C., and Whitelaw, J. H., “Flow Characteristics of a Centrifugal Pump,” ASME Journal of Fluids Engineering, Vol. 116, pp. 303-309, 1994.
    [13] Huang, J. D., Yin, M., Deng, Q., and Yao, X. J., “Effects of Concealed Motor’s Shape on the Performance of Forward Multi-Blade Centrifugal Fans,” Journal of Shanghai Jiaotong University, Vol. 35, No. 8, pp. 1196-1199, 2001.
    [14] 孫鈞瑋,“前傾式離心風機數值與實驗之整合研究”,國立台灣科技大學機械工程技術研究所碩士論文,2004。
    [15] Moller, P. S., “A Radial Diffuser Using Incompressible Flow between Narrowly Spaced Disk,” Journal of Basic Engineering, pp.155-162, 1966.
    [16] Raj, D. and Swim, W. B., “Measurements of the Mean Flow Velocity and Fluctuations at the Exit of a F-C Centrifugal Fan Rotor,” Journal of Engineering for Power, Vol. 103, No. 2, pp. 393-399, 1981.
    [17] Kjork, A. and Lofdahl, L., “Hot-Wire Measurements inside a Centrifugal Fan Impeller,” Journal of Fluids Engineering, Vol. 111, pp. 363-368, 1989.
    [18] 廖家坤,“離心式鼓風機之流場與噪音研究”,國立清華大學動力機械工程學系碩士論文,1997年。
    [19] 廖祿甫,“渦殼對離心式泵性能的影響”,國立成功大學航空太空工程學系碩士論文,1997年。
    [20] Gu, F., Engeda, A., Cave, M., and Liberti, J. L. D., “A Numerical Investigation on the Volute/Diffuser Interaction due to the Axial Distortion at the Impeller Exit,” ASME Journal of Fluid Engineering, Vol. 123, pp. 475-483, Sep. 2001.
    [21] Hüebner, G., “Noise Generated by Centrifugal Fans”, Siemens- Zeitschrift, Vol. 8, pp. 145-155, 1959.
    [22] Schlichting, H., “Application of the Boundary Layer Theory to Flow Problems of Turbo Machines”, Siemens-Zeitschrift, Vol. 33, No. 7, pp. 74-82, 1959.
    [23] Neise, W. and Koopmann, G. H., “The Use of Resonators to Silence Centrifugal Blowers”, Journal of Sound and Vibration, Vol. 82, No. 1, pp. 17-27, 1982.
    [24] Neise, W., “Review of Noise Reduction Methods for Centrifugal Fans,” Journal of Engineering for Industry, Vol. 104, pp. 151-161, 1982.
    [25] 洪宗揚,“後傾式離心風機之噪音研究”,國立台灣工業技術學院機械工程技術研究所碩士論文,1996。
    [26] 呂水煙,“前傾式離心風機之減噪研究”,國立台灣工業技術學院機械工程技術研究所碩士論文,1997。
    [27] 陳秉勣,“離心風扇舌尖外型對性能與噪音的影響”,國立成功大學航空太空工程研究所碩士論文,2003。
    [28] Su, M. M., Gu, C. A., and Miao, Y. M., “Numerical Study of Viscous Flow Field in Mixed-Flow Fan”, Journal of Xi’an Jiaotong University, Vol. 30, No. 10, pp. 55-63, 1996.
    [29] Patankar, S. V. and Spalding, D. B., “A Calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flows”, International Journal of Heat Mass Transfer, Vol. 15, pp. 1787-1806, 1972.
    [30] 林顯群、黃家烈、許豐麟,“進風口面積在新式筆記型電腦冷卻扇之研究”,中華民國機械工程學會第十七屆全國學術研討會論文集,高雄,pp. 621-628,2000。
    [31] 黃家烈,“筆記型電腦散熱風扇之研究”, 國立台灣科技大學機械工程技術研究所博士論文,2001。
    [32] 謝旻翰,“風機濾網機組之流場數值分析”,國立台灣科技大學機械工程技術研究所碩士論文,2008。
    [33] Eck, I. B., “Fans:Design and Operations of Centrifugal, Axial-Flow and Cross-Flow Fans,” Pergamon Press, New York, 1973.
    [34] Fluent 6.2 Documentation, FLUENT INC, 2005.
    [35]ANSI/AMCA Standard 210-99 (ANSI/ASHRAE 51-1999), “Laboratory Method of Testing Fans for Aerodynamic Performance Rating,” Air Movement and Control Association, Inc., 1999.
    [36] CNS 8753, “Determination of Sound Power Level of Noises for Fan, Blower, and Compressors,” Chinese National Standard, 1982
    [37] 游裕傑,“離心式電腦風扇的設計與分析”,國立成功大學機械工程學系碩士論文集,2002。
    [38] ISO 3754, “Acoustics – Determination of Sound Power Levels of Noise Sources Using Sound Pressure – Precision Methods for Anechoic and Hemi-Anechoic Rooms”, 2003.
    [39] Launder, B. E. and Spalding, D. B., “Lectures in Mathematical Models of Turbulence ”, Academic Press, London, England, 1972.

    無法下載圖示 全文公開日期 2015/07/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE