簡易檢索 / 詳目顯示

研究生: 黃雋介
Jyun-Jie Huang
論文名稱: 以低解析度霍爾元件角度回授達成高效率風扇的驅動系統
High Efficiency Fan Drive System Using Low Resolution Hall Effect Position Feedback
指導教授: 劉添華
Tian-Hua Liu
口試委員: 許源浴
Yuan-Yih Hsu
廖聰明
Chang-Ming Liaw
林法正
Faa-Jeng Lin
劉益華
Yi-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 103
中文關鍵詞: 風扇永磁同步電動機轉軸角度估測超前角控制效率最佳化
外文關鍵詞: fan, PMSM, rotor position estimation, advanced-angle control, efficiency optimization
相關次數: 點閱:386下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討一個不需使用編碼器與電流偵測元件回授的轉速閉迴路風扇驅動系統,僅使用三個低解析度的霍爾效應元件作為角度回授信號,實現使用正弦波電流驅動的永磁同步電動機風扇驅動系統。

    為了達到高解析度的轉軸角度估測來進行向量控制,本文使用回授低解析度霍爾信號的動態資訊,達成高解析度轉軸角度估測器,並利用多項式近似法,估測電動機的加速度參數,改善加、減速下轉軸角度的估測精度。為了不使用電流偵測元件,本文提出兩種超前角控制方法,包括反電勢法與阻抗相位法,以改善風扇驅動系統的效率,其中阻抗相位法可較反電勢法達成較佳的驅動效率。

    本文使用數位信號處理器TMS320F28335作為控制核心,實現低解析度霍爾元件的轉軸角度估測法則,以及超前角控制法則。實驗結果說明本文所提出方法的正確性及可行性。


    This thesis investigates a closed-loop fan drive system without using any encoder and current sensors. A sinusoidal current based PMSM drive system for fan application is implemented by using only three low-resolution Hall-effect position sensors as the position feedback signals.

    To achieve a high-resolution position estimation for vector control, this paper uses dynamical information of the low-resolution Hall-effect position feedback signals to obtain the estimated rotor position. A polynomial approximation method is used to estimate the acceleration parameter and improve the estimation resolution when the motor is accelerated or decelerated. Two advanced-angle control methods, including the back-EMF method and the impedance-phase method are proposed to improve the efficiency of a current-sensorless fan drive system. The impedance-phase method provides higher efficiency than the back-EMF method.

    A digital signal processor, TMS320F28335, is used to execute the rotor position estimation and the advanced-angle control algorithms. Experimental results can validate the correctness and feasibility of the proposed methods.

    摘要I 英文摘要II 目錄III 圖目錄VI 表目錄X 符號索引XI 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 目的與貢獻 6 1.4 大綱 7 第二章 永磁同步電動機8 2.1 簡介 8 2.2 結構與特性 8 2.3 數學模型 13 第三章 電動機驅動系統 20 3.1 簡介 20 3.2 六步方波電流脈波寬度調變 21 3.3 空間向量脈波寬度調變 26 第四章 風扇驅動系統介紹 32 4.1 簡介 32 4.2 風扇特性介紹 32 4.3 風扇驅動器架構 36 4.4 轉軸角度估測方法 38 4.4.1 積分估測法 38 4.4.2 多項式近似法 40 4.4.3 驅動模式切換 43 4.5 不使用電流偵測元件的效率控制法 44 4.5.1 反電勢法 45 4.5.2 阻抗相位法 48 第五章 系統研製 54 5.1 簡介 54 5.2 硬體電路設計 56 5.2.1 功率開關電路 56 5.2.2 閘級驅動電路 57 5.2.3 霍爾效應元件回授電路 58 5.2.4 過電流保護電路 59 5.2.5 數位信號處理器 60 5.3 軟體程式設計 63 5.3.1 主程式流程 63 5.3.2 PWM中斷服務程式 65 5.3.3 霍爾元件信號外部中斷服務程式 67 5.3.4 超前角控制程式 70 第六章 實測結果 72 6.1 簡介 72 6.2 實測結果 74 第七章 結論與建議 98 參考文獻 99

    [1]H. Abu-Rub, M. Malinowski, and K. Al-Haddad, Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications, 1 ed., Wiley-IEEE Press, 2014.

    [2]B. K. Bose, "Global warming: energy, environmental pollution, and the impact of power electronics," IEEE Industrial Electronics Magazine, vol. 4, no. 1, pp. 6-17, Mar. 2010.

    [3]S. Dunkl, A. Muetze, and G. Schoener, "Design constraints of small single-phase permanent magnet brushless DC drives for fan applications," IEEE Transactions on Industry Applications, vol. 51, no. 4, pp. 3178-3186, Jul./Aug. 2015.

    [4]C. L. Chiu, Y. T. Chen, Y. L. Liang, and R. H. Liang, "Optimal driving efficiency design for the single-phase brushless DC fan motor," IEEE Transactions on Magnetics, vol. 46, no. 4, pp. 1123-1130, Apr. 2010.

    [5]H. Chen and J. J. Gu, "Switched reluctance motor drive with external rotor for fan in air conditioner," IEEE/ASME Transactions on Mechatronics, vol. 18, no. 5, pp. 1448-1458, Oct. 2013.

    [6]J. F. Fuchsloch, W. R. Finley, and R. W. Walter, "The next generation motor," IEEE Industry Applications Magazine, vol. 14, no. 1, pp. 37-43, Jan./Feb. 2008.

    [7]D. Fodorean, M. M. Sarrazin, C. S. Marţiş, J. Anthonis, and H. Van der Auweraer, "Electromagnetic and structural analysis for a surface-mounted PMSM used for light-EV," IEEE Transactions on Industry Applications, vol. 52, no. 4, pp. 2892-2899, Jul./Aug. 2016.

    [8]F. Rodriguez and A. Emadi, "A novel digital control technique for brushless DC motor drives," IEEE Transactions on Industrial Electronics, vol. 54, no. 5, pp. 2365-2373, Oct. 2007.

    [9]H. Makino, T. Kosaka, and N. Matsui, "Digital PWM-control-based active vibration cancellation for switched reluctance motors," IEEE Transactions on Industry Applications, vol. 51, no. 6, pp. 4521-4530, Nov./Dec. 2015.

    [10]R. Ancuti, I. Boldea, and G. D. Andreescu, "Sensorless V/F control of high-speed surface permanent magnet synchronous motor drives with two novel stabilising loops for fast dynamics and robustness," IET Electric Power Applications, vol. 4, no. 3, pp. 149-157, Mar. 2010.

    [11]J. L. Chen, S. K. Tseng, and T. H. Liu, "Implementation of high-performance sensorless interior permanent-magnet synchronous motor control systems using a high-frequency injection technique," IET Electric Power Applications, vol. 6, no. 8, pp. 533-544, Sept. 2012.

    [12]T. Suzuki, Y. Shimizu, Y. Iwaji, R. Takahata, and S. Aoyagi, "Minimum current start-up method by combined use of two position-sensorless controls," IEEE Transactions on Industry Applications, vol. 51, no. 4, pp. 3086-3093, Jul./Aug. 2015.

    [13]S. C. Yang and Y. L. Hsu, "Full speed region sensorless drive of permanent-magnet machine combining saliency-based and back-EMF-based drive," IEEE Transactions on Industrial Electronics, vol. 64, no. 2, pp. 1092-1101, Feb. 2017.

    [14]W. Zhao, T. A. Lipo, and B. I. Kwon, "Material-efficient permanent-magnet shape for torque pulsation minimization in SPM motors for automotive applications," IEEE Transactions on Industrial Electronics, vol. 61, no. 10, pp. 5779-5787, Oct. 2014.

    [15]Dalal and P. Kumar, "Analytical model for permanent magnet motor with slotting effect, armature reaction, and ferromagnetic material property," IEEE Transactions on Magnetics, vol. 51, no. 12, pp. 1-10, Dec. 2015.

    [16]W. Chen, Y. Liu, X. Li, T. Shi, and C. Xia, "A novel method of reducing commutation torque ripple for brushless DC motor based on cuk converter," IEEE Transactions on Power Electronics, vol. 32, no. 7, pp. 5497-5508, Jul. 2017.

    [17]D. Han, C. T. Morris, and B. Sarlioglu, "Common-mode voltage cancellation in PWM motor drives with balanced inverter topology," IEEE Transactions on Industrial Electronics, vol. 64, no. 4, pp. 2683-2688, Apr. 2017.

    [18]J. Hu, J. Zou, F. Xu, Y. Li, and Y. Fu, "An improved PMSM rotor position sensor based on linear hall sensors," IEEE Transactions on Magnetics, vol. 48, no. 11, pp. 3591-3594, Nov. 2012.

    [19]X. Song, J. Fang, and B. Han, "High-precision rotor position detection for high-speed surface PMSM drive based on linear Hall-effect sensors," IEEE Transactions on Power Electronics, vol. 31, no. 7, pp. 4720-4731, Jul. 2016.

    [20]M. C. Harke, G. De Donato, F. Giulii Capponi, T. R. Tesch, and R. D. Lorenz, "Implementation issues and performance evaluation of sinusoidal, surface-mounted PM machine drives with Hall-effect position sensors and a vector-tracking observer," IEEE Transactions on Industry Applications, vol. 44, no. 1, pp. 161-173, Jan./Feb. 2008.

    [21]D. M. Lee, D. C. Lim, and H. J. Ahn, "Position linearisation scheme for permanent magnet synchronous motor drive of washing machine using low-resolution Hall sensors," Electronics Letters, vol. 51, no. 22, pp. 1765-1767, Oct. 2015.

    [22]J. Fang, H. Li, and B. Han, "Torque ripple reduction in BLDC torque motor with nonideal back EMF," IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4630-4637, Nov. 2012.

    [23]S. S. Bharatkar, R. Yanamshetti, D. Chatterjee, and A. K. Ganguli, "Dual-mode switching technique for reduction of commutation torque ripple of brushless DC motor," IET Electric Power Applications, vol. 5, no. 1, pp. 193-202, Jan. 2011.

    [24]H. Lu, L. Zhang, and W. Qu, "A new torque control method for torque ripple minimization of BLDC motors with un-ideal back EMF," IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 950-958, Mar. 2008.

    [25]T. Sun, J. Wang, and X. Chen, "Maximum torque per ampere (MTPA) control for interior permanent magnet synchronous machine drives based on virtual signal injection," IEEE Transactions on Power Electronics, vol. 30, no. 9, pp. 5036-5045, Sept. 2015.

    [26]Ahmed, Y. Sozer, and M. Hamdan, "Maximum torque per ampere control for buried magnet PMSM based on DC-link power measurement," IEEE Transactions on Power Electronics, vol. 32, no. 2, pp. 1299-1311, Feb. 2017.

    [27]P. D. C. Perera, F. Blaabjerg, J. K. Pedersen and P. Thogersen, "A sensorless, stable V/F control method for permanent-magnet synchronous motor drives," in IEEE Transactions on Industry Applications, vol. 39, no. 3, pp. 783-791, May/Jun. 2003.

    [28]I. Cunh, T. Strack, and S. Stricker, Fans and Blowers Energy Efficiency Reference Guide, CEATI International Inc., 2008.

    [29]F. Giulii Capponi, G. De Donato, L. Del Ferraro, O. Honorati, M. C. Harke, and R. D. Lorenz, "AC brushless drive with low-resolution Hall-effect sensors for surface-mounted PM machines," IEEE Transactions on Industry Applications, vol. 42, no. 2, pp. 526-535, Mar./Apr. 2006.

    [30]Z. Feng and P. P. Acarnley, "Extrapolation technique for improving the effective resolution of position encoders in permanent-magnet motor drives," IEEE/ASME Transactions on Mechatronics, vol. 13, no. 4, pp. 410-415, Aug. 2008.

    [31]S. Morimoto, M. Sanada and Y. Takeda, "High-performance current-sensorless drive for PMSM and SynRM with only low-resolution position sensor," IEEE Transactions on Industry Applications, vol. 39, no. 3, pp. 792-801, May/Jun. 2003.

    [32]Texa Instruments, TMS320F2833X, TMS320F2823X Digital Signal Controllers (DSCS), 2016.

    無法下載圖示 全文公開日期 2022/08/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE