簡易檢索 / 詳目顯示

研究生: 蒲函廷
Han-ting Pu
論文名稱: 永磁同步電動機驅動系統的適應性控制設計及振動抑制
Adaptive Controller Design and Vibration Elimination for a Permanent-Magnet Synchronous Motor Drive System
指導教授: 劉添華
Tian-Hua Liu
口試委員: 葉勝年
Sheng-Nian Yeh
楊勝明
Sheng-Ming Yang
廖聰明
Chang-Ming Liaw
王醴
Li Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 106
中文關鍵詞: 永磁同步電動機適應性控制振動抑制帶陷濾波器
外文關鍵詞: vibration elimination
相關次數: 點閱:186下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在設計及研製永磁同步電動機驅動系統其適應性控制器的系統,並結合帶陷濾波器以降低實際應用時產生的機械振動。文中首先根據適應性步階回歸控制法則分別設計速度及位置控制器,完成1 rpm至3000 rpm的速度控制及精密的位置控制;其次,結合帶陷濾波器,應用在永磁同步電動機的電流迴路,減少其機械振動。
    文中以瑞薩公司生產的數位信號處理器RF70845AFPV為控制核心,作為速度、位置控制器及帶陷濾波器的計算。實測結果與電腦模擬結果甚近,且實測結果說明本文所提方法的可行性與正確性。


    The thesis proposes the adaptive controller design and implementation for a permanent-magnet synchronous motor (PMSM) drive system. A notch filter is used to reduce the mechanical vibration in the practical applications. First, the adaptive backstepping control algorithms are used to design a speed controller and a position controller. The implemented drive system achieves speed adjustment from 1 rpm to 3000 rpm and a precise position control. The aforementioned notch filter is then designed in the current-loop to reduce the mechanical vibrations.
    A Renesas digital signal processor is used as the control core to execute the speed and position control algorithms, as well as the notch filtering process. Experimental results not only verify the simulation, but also show the feasibility and correctness of the proposed method.

    中文摘要 I 英文摘要 II 目錄 III 圖目錄 V 表目錄 VIII 符號索引 IX 第一章 緒論 1 1.1研究動機 1 1.2文獻回顧 2 1.3目的 4 1.4大綱 5 第二章 永磁同步電動機驅動原理 6 2.1永磁同步電動機介紹 6 2.2數學模式 10 第三章 控制器設計 17 3.1簡介 17 3.2適應性步階回歸速度控制器 19 3.3適應性步階回歸位置控制器 24 第四章 振動抑制 32 4.1簡介 32 4.2振動分析 35 4.3帶陷濾波器設計 38 第五章 系統介紹 40 5.1簡介 40 5.2硬體電路架構 42 5.2.1永磁同步電動機 42 5.2.2數位信號處理器 43 5.2.3三相變頻器及驅動級電路 46 5.2.4數位/類比轉換電路 48 5.3軟體程式設計 49 5.3.1程式規劃 49 5.3.2轉軸角度倍頻程序 51 5.3.3速度控制器處理程序 51 5.3.4位置控制器處理程序 53 5.3.5電流控制器處理程序 54 5.5.6脈寬調變處理程序 54 第六章 模擬與實測 55 6.1簡介 55 6.2電腦模擬 57 6.3模擬及實測結果 58 第七章 結論與建議 89 參考文獻 90 作者簡介 93

    [1]F. Rodriguez and A. Emadi, “A novel digital control technique for brushless DC motor drives,” IEEE Transactions on Industrial Electronics, vol. 54, no. 5, pp. 2365-2373, Oct. 2007.
    [2]J. F. Fuchsloch, W. R. Finley, and R. W. Walter, “The next generation motor,” IEEE Industry Applications Magazine, vol. 14, pp. 37-43, Jan./Feb. 2008.
    [3]I. Husain, “Minimization of torque ripple in SRM drives,” IEEE Transactions on Industrial Electronics, vol. 49, no. 1, pp. 28-39, Feb. 2002.
    [4]D. K. Kim, K. W. Lee, and B. I. Kwon, “Commutation torque ripple reduction in a position sensorless brushless DC motor drive,” IEEE Transactions on Power Electronics, vol. 21, no. 6, pp. 1762-1768, Nov. 2006.
    [5]T. Schneider, T. Koch, and A. Binder, “Comparative analysis of limited field weakening capability of surface mounted permanent magnet machines,” IEE Proceedings Electric Power Applications, vol. 151, no. 1, pp. 76-82, Jan. 2004.
    [6]N. Bianchi, S. Bolognani, and M. Zigliotto, “High-performance PM synchronous motor drive for an electrical scooter,” IEEE Transactions on Industry Applications, vol. 37, no. 5, pp. 1348-1355, Sep./Oct. 2001.
    [7]K. T. Kim, K. S. Kim, S. M. Hwang, T. J. Kim, and Y. H. Jung, “Comparison of magnetic forces for IPM and SPM motor with rotor eccentricity,” IEEE Transactions on Magnetics, vol. 37, no. 5, pp. 3448-3451, Sep. 2001.
    [8]M. Tursini, F. Parasiliti, and Z. Daqing, “Real-time gain tuning of PI controllers for high-performance PMSM drives,” IEEE Transactions on Industry Applications, vol. 38, no. 4, pp. 1018-1026, July/Aug. 2002.
    [9]L. Haomin, J. E. McInroy, and J. C. Hamann, “Analysis and design of motion control systems with positive force/torque feedback using robust control methods,” IEEE Transactions on Control Systems Technology, vol. 13, no. 5, pp. 752-759, Sep. 2005.
    [10]K. Y. Cheng and Y. Y. Tzou, “Fuzzy optimization techniques applied to the design of a digital PMSM servo drive,” IEEE Transactions on Power Electronics, vol. 19, no. 4, pp. 1085-1099, July 2004.
    [11]Y. A. R. Mohamed, “Adaptive self-tuning speed control for permanent-magnet synchronous motor drive with dead time,” IEEE Transactions on Energy Conversion, vol. 21, no. 4, pp. 855-862, Dec. 2006.
    [12]C. H. Fang, C. M. Huang, and S. K. Lin, “Adaptive sliding-mode torque control of a PM synchronous motor,” IEE Proceedings_Electric Power Applications, vol. 149, no. 3, pp. 228-236, May 2002.
    [13]J. O. Jang, “A deadzone compensator of a DC motor system using fuzzy logic control,” IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 31, no. 1, pp. 42-48, Feb. 2001.
    [14]M. M. Morcos and A. Lakshmikanth, “DSP-based solutions for AC motor drives,” IEEE Power Engineering Review, vol. 19, pp. 57-59, Sep. 1999.
    [15]P. Niazi, H. A. Toliyat, and A. Goodarzi, “Robust maximum torque per Ampere (MTPA) control of PM-assisted SynRM for traction Applications,” IEEE Transactions on Vehicular Technology, vol. 56, no. 4, pp. 1538-1545, July 2007.
    [16]T. Saito, “Magnetization process in Co-Zr-B permanent-magnet materials,” IEEE Transactions on Magnetics, vol. 40, no. 4, pp. 2919-2921, July 2004.
    [17]P. Zhou, W. N. Fu, D. Lin, S. A. S. S. Stanton, and Z. J. A. C. Z. J. Cendes, “Numerical modeling of magnetic devices,” IEEE Transactions on Magnetics, vol. 40, no. 4, pp. 1803-1809, July 2004.
    [18]P. Pillay, “Vector control of AC permanent magnet machines,” IEEE PESC-1989, pp. 293-297.
    [19]J. Zhou and Y. Wang, “Adaptive backstepping speed controller design for a permanent magnet synchronous motor,” IEE Proceedings_Electric Power Applications, vol. 149, no. 2, pp. 165-172, Mar. 2002.
    [20]M. A. Rahman, D. M. Vilathgamuwa, M. N. Uddin, and A. K.-J. T. King-Jet Tseng, “Nonlinear control of interior permanent-magnet synchronous motor,” IEEE Transactions on Industry Applications, vol. 39, no. 2, pp. 408-416, Mar./Apr. 2003.
    [21]J. L. Shi, T. H. Liu, and Y. C. Chang, “Adaptive controller design for a sensorless IPMSM drive system with a maximum torque control,” IEE Proceedings Electric Power Applications, vol. 153, no. 6, pp. 823-833, Nov. 2006.
    [22]C. R. Fuller and A. H. von Flotow, “Active control of sound and vibration,” IEEE Control Systems Magazine, vol. 15, pp. 9-19, Dec. 1995.
    [23]Y. Hori, H. Sawada, and C. Yeonghan, “Slow resonance ratio control for vibration suppression and disturbance rejection in torsional system,” IEEE Transactions on Industrial Electronics, vol. 46, no. 1, pp. 162-168, Feb. 1999.
    [24]H. Wang, D. H. Lee, Z. G. Lee, and J. W. Ahn, “Vibration rejection scheme of servo drive system with adaptive notch filter,” IEEE PESC -2006, pp. 1-6.
    [25]K. Ohno and T. Hara, “Adaptive resonant mode compensation for hard disk drives,” IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 624-630, Apr. 2006.
    [26]P. Pillay and R. Krishnan, “Modeling of permanent magnet motor drives,” IEEE Transactions on Industrial Electronics, vol. 35, no. 4, pp. 537-541, Nov. 1988.
    [27]B. K. Bose, Modern Power Electronics and AC Drives, Prentice-Hall, 2002.
    [28]I. Kanellakopoulos, P. V. Kokotovic, and A. S. Morse, “Systematic design of adaptive controllers for feedback linearizable systems,” IEEE Transactions on Automatic Control, vol. 36, no. 11, pp. 1241-1253, Nov. 1991.
    [29]P. V. Kokotovic, “The joy of feedback: nonlinear and adaptive,” IEEE Control Systems Magazine, vol. 12, pp. 7-17, Jun. 1992.
    [30]M. Krstic, I. Kanellakopoulos, and P. V. Kokotoic, Nonlinear and Adaptive Control Design, John Wiley & Sons, 1995.
    [31]G. Tao, Adaptive Control Design and Analysis, John Wiley & Sons, 2003.
    [32]Renesas, SH7080 Group Hardware Manual, 2006.

    無法下載圖示 全文公開日期 2013/07/07 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE