簡易檢索 / 詳目顯示

研究生: 林坤億
Kun-Yi Lin
論文名稱: 利用接觸式曝光與立體光罩製作微針陣列模仁之研究
The Study of Micro-needle Array Mold by Using Micro-lens Mask Through Contact Printing
指導教授: 趙振綱
Ching-Kong Chao
林宗鴻
Tsung-Hung Lin
口試委員: 張瑞慶
Rwei-Ching Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 154
中文關鍵詞: 微透鏡光罩微針陣列接觸式曝光光纖雷射SU-8
外文關鍵詞: micro-lens mask, micro- needle array, contact exposure, fiber laser, SU-8
相關次數: 點閱:367下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用接觸式曝光與微透鏡光罩製作微針陣列模仁。當平行紫外光透過微透鏡光罩,使光線在光阻上呈現發散,而製作出微針陣列凸模仁。首先,以幾何光學推導接觸式曝光系統中微透鏡聚焦長度之光路預測公式,並與造鏡者公式及光學模擬分析結果作比較。再以光路預測公式進行設計製作微透鏡之尺寸。由光路預測公式得知微透鏡直徑580μm與高度為38.57μm,能使聚焦長度在玻璃厚度2300μm處。藉由五組不同塗佈轉速及熱熔法方式,將微透鏡精準製作在孔徑光欄上,得到微透鏡光罩。其五組參數之微透鏡聚焦長度分別為2410μm、2314μm、2216μm、2263μm及2279μm。再以高功率氦氖雷射紅光進行檢測,其結果顯示製作的微透鏡光罩有聚焦、發散功用。將五組微透鏡光罩採接觸式曝光法,製作在負光阻(SU-8)形成微針陣列模仁,其模仁結構外形分別為倒圓台形狀、沙漏形狀、圓台形狀。模仁之頂部尺寸及底部尺寸皆有縮小的趨勢。
    另以光纖雷射雕刻方法製作,將光纖雷射雕刻在正光阻(AZ4620)及矽晶圓上,藉由不同功率及頻率作為雕刻條件,結果顯示當功率60%與頻率30Hz之正光阻模仁完整,經由PDMS翻模得到微針陣列,微針直徑約為170μm、高度約為60μm,其外形輪廓完整且表面品質佳。


    The new micro-needle array mold fabrication method using micro-lens mask through contact printing is reported. At first, the parallel ultraviolet light would pass through the mask of micro-lens. The light is divergent on the photoresist. Finally, micro-needle array mold would be obtained. This study used two different prediction formulas, including Lensmaker’s formula and Optical path prediction formula. These results obtained by two methods would be compared with optical simulation results. The result of Optical path prediction formula, which was better than the other, would be used to design micro-lens. This micro-lens was 580μm in diameter; 38.57μm in height; and 2300μm of focal length. In fabrication process, the micro-lens mask could be obtained by using five different coating speeds and thermal reflow method. Five different types of the micro-lens focal length were 2410μm, 2314μm, 2216μm, 2263μm and 2279μm. After that, the detection results which used by high power red helium-neon laser, showed that micro-lens might be focus and then divergent. These five types of micro-lens mask with contact exposure method were manufactured in the negative photoresist (SU-8) formation micro-needle array mold. Three kinds of mold structure were showed, including inverted frustum shape, sand clock shape and frustum shape. The top and the bottom of the molds tended to reduce their dimension.
    By the other hand, another method to fabricate micro-needle array mold was by using fiber laser. The fiber laser was engraved in the positive photoresist (AZ4620) and silicon wafer, using different carving conditions with different power and frequency. The results indicated that when the power of 60% with the frequency of 30Hz, the positive photoresist mold would be completed. By using PDMS molds, micro-needle with the diameter of approximately 170μm and height of 60μm has shown a good quality of contour suface.

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 符號索引 VI 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 微針陣列簡介 2 1.3 文獻回顧 4 1.3.1 實心微針 7 1.3.2 塗層微針 14 1.3.3 自我溶解微針 17 1.3.4 空心微針 22 1.4 研究動機與目的 26 1.5 論文架構 27 第二章 幾何光學 29 2.1 反射定律與折射定律 29 2.2 費馬原理 32 2.3 單個折射球面 33 2.4 造鏡者公式 37 第三章 光學特性模擬 39 3.1 光學模擬軟體之介紹 39 3.2 光學模擬軟體之設定 39 3.3 曝光系統設計 41 3.3.1 孔徑光欄 41 3.3.2 微透鏡尺寸 42 3.3.3 微透鏡間距 43 3.3.4 曝光系統模型建立 44 3.4 光學參數設定 46 3.4.1 材料性質 46 3.4.2 表面性質 47 3.5 光源設定 51 3.6 數學計算平凸透鏡之聚焦長度公式 52 3.7 收斂性分析 55 第四章 微針陣列模仁製作 58 4.1 利用微影製程製作微針陣列模仁 58 4.1.1 熱熔法 59 4.1.2 微透鏡光罩製作 61 4.1.3 利用負光阻SU-8製作微針陣列模仁 69 4.2 利用光纖雷射製作微針陣列模仁 73 第五章 光學模擬分析結果 78 5.1 數學計算平凸透鏡之聚焦長度公式結果討論 78 5.2 光學模擬分析結果 81 5.3 光學模擬結果討論 85 第六章 微針陣列模仁製作結果與討論 93 6.1 微透鏡光罩製作結果 93 6.2 光學檢測 100 6.3 利用微影製程製作微針陣列模仁結果 102 6.4 利用光纖雷射製作微針陣列模仁結果 106 6.5 微針陣列模仁實驗討論 126 第七章 結論與未來展望 137 7.1 結論 137 7.2 未來展望 138 參考文獻 139 附錄A製程儀器設備 143 附錄B量測儀器設備 149

    [1] http://zh.wikipedia.org/zh-tw/%E5%BE%AE%E7%94%B5%E5%AD%90
    [2] http://cc.cust.edu.tw/~lan/H_technology/MEMS.pdf
    [3] 皮膚構造圖,http://yhoo.it/17r0Efr
    [4] 輔仁大學醫學系藥劑學研究室。
    [5] Y.C. Kim, J.H. Park, MR. Prausnitz, “Microneedles for drug and vaccine delivery,” Advanced Drug Delivery Reviews, pp.1–22, (2012).
    [6] E.R.Parker, M.P.Rao, K.L.Turner, C.D.Meinhart, N.C.MacDonald, “Bulk Micromachined Titanium Microneedles, ” Journal of microelectromechanical Systems, Vol. 16, No. 2, pp.289–295, (2007).
    [7] M.W. Wang, J.H. Jeng, “Optimal Molding Parameter Design of PLA Micro Lancet Needles Using the Taguchi Method, ” Polymer-Plastics Technology and Engineering, 48, pp.730–735, (2009).
    [8] J.H. Park, M.G. Allen, M.R. Prausnitz, “Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery, ” Journal of Controlled Release 104, pp.51–66, (2005).
    [9] J.H. Park, Y.K. Yoon, S.O. Choi, M.R. Prausnitz, M.G. Allen, “Tapered Conical Polymer Microneedles Fabricated Using an Integrated Lens Technique for Transdermal Drug Delivery, ” IEEE Transactions on Biomedical Engineering, Vol. 54
    , No. 5, pp.903–913, (2007).
    [10] Y. Xie, B. Xu, PhD, Y. Gao, “Controlled transdermal delivery of model drug compounds by MEMS microneedle array, ” Nanomedicine: Nanotechnology, Biology, and Medicine 1, pp.184–190, (2005).
    [11] K. Kim, J.B. Lee, “High aspect ratio tapered hollow metallic microneedle arrays with microfluidic interconnector, ” Microsyst Technol 13, pp.231–235, (2007).
    [12] S.J. Moon, S.S. Lee, H.S. Lee, T.H. Kwon, “Fabrication of microneedle array using LIGA and hot embossing process, ” Microsystem Technologies 11, pp.311–318, (2005).
    [13] C.C. Hsu, Y.T. Chen, C.H. Tsai, S.W. Kang, “Fabrication of Microneedles,” IEEE International Conference on Nano/Micro Engineered and Molecular Systems January , pp.16 - 19, (2007).
    [14] J.H. Park, M.G. Allen, M.R. Prausnitz, “Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery, ” J. Control. Release 104, pp.51–66 , (2005).
    [15] U.U. Shah, M. Roberts, M. Orlu Gul, C. Tuleu, M.W. Beresford, “Needle-free and microneedle drug delivery in children: a case for disease-modifying antirheumatic drugs (DMARDs), ” Int. J. Pharm. 416, pp.1–11, (2011).
    [16] M.C. Gower, “Industrial applications of laser micromachining, ” Opt. Express 7, pp. 56–67, (2000).
    [17] S.P. Davism, W. Martanto, M.G. Allen, M.R. Prausnitz , “ Hollow metal microneedles for insulin delivery to diabetic rats, ”IEEE Trans.Biomed.Eng.52 , pp.909–915, (2005).
    [18] S. Aoyagi, H. Izumi, M. Fukuda, “Biodegradable polymer needle with various tip angles and consideration on insertion mechanism of mosquito's proboscis, ” Sens. Actuators A Phys. 143, pp.20–28, (2008).
    [19] C.Y. Jin, M.H. Han, S.S. Lee, Y.H. Choi, “Mass producible and biocompatible microneedle patch and functional verification of its usefulness for transdermal drug delivery, ” Biomed. Microdevices 11, pp.1195–1203, (2009).
    [20] S.J. Moon, S.S. Lee, H.S. Lee, T.H. Kwon, “Fabrication of microneedle array using LIGA and hot embossing process, ” Microsyst. Technol. 11, pp.311–318, (2005).
    [21] R.F. Donnelly, R. Majithiya, T.R.R. Singh, D.I.J. Morrow, M.J. Garland, Y.K. Demir, K. Migalska, E. Ryan, D. Gillen, C.J. Scott, A.D. Woolfson, “Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique, ” Pharm. Res. 28, pp.41–57, (2011).
    [22] H.S. Gill, M.R. Prausnitz, “Coated microneedles for transdermal delivery, ” J. Control. Release 117, pp.227–237, (2007).
    [23] J.A. Matriano, M. Cormier, J. Johnson, W.A. Young, M. Buttery, K. Nyam, P.E. Daddona , “ Macroflux (R) microprojection array patch technology : a new and efficient approach for intracutaneous immunization, ” Pharm. Res. 19 , pp.63–70, (2002).
    [24] T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, R. Morita, “Metal microneedle fabrication using twisted light with spin, ” Opt. Express 18, pp. 17967–17973, (2010).
    [25] P.G. Jung, T.W. Lee, D.J. Oh, S.J. Hwang, I.D. Jung, S.M. Lee, J.S. Ko, “Nickel microneedles fabricated by sequential copper and nickel electroless plating and copper chemical wet etching, ” Sens. Mater. 20, pp.45–53, (2008).
    [26] N. Wilke, A. Mulcahy, S.-R. Ye, A. Morrissey, “Process optimization and characterization of silicon microneedles fabricated by wet etch technology,” Microelectronics Journal 36 , pp.650–656 , (2005).
    [27] C.W Zhai, J. Xu, B.W Zheng, C. Wang, M.W Zhu, Y.F Chen, “Silica Λ-shape wedge arrays fabrication and interspace tuning via hot embossing and sol–gel replication,” Journal of Non-Crystalline Solids 358 , pp. 1345–1349, (2012).
    [28] Y.S. Liao, Y.T. Chen, “ Precision fabrication of an arrayed micro metal probe by the laser - LIGA process , ” JOURNAL OF MICROMECHANICS AND MICROENGINEERING.15 , pp.2433–2440 , (2005).
    [29] Y.K. Yoon, J.H. Park, MG. Allen, “Multidirectional UV Lithography for Complex 3-D MEMS Structures, ” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 15, NO. 5, pp.1121-1130, (2006).
    [30] M. Han, D.K. Kim, S.H. Kang, H.R. Yoon, B.Y. Kim, SS. Lee, K.D. Kim, H. G Lee, “ Improvement in antigen-delivery using fabrication of a grooves-embedded microneedle array ,”Sensors and Actuators B 137, pp. 274–280, (2009).
    [31] S. Bystrova, R. Luttge, “Micromolding for ceramic microneedle arrays ,” Microelectronic Engineering 88, pp.1681–1684, (2011).
    [32] H.C. Kuo, Y. Lin,Y.K. Shen, S.C. Kang, “Invasive PLA Microneedle Fabrication Applied to Drug Delivery System,”IEEE, pp.7437-7440, (2011).
    [33] K. Kim, DS. Park, H.M. Lu,W. Che, K. Kim, J.B. Lee, CH. Ahn, “A tapered hollow metallic microneedle array using backside exposure of SU-8, ”JOURNAL OF MICROMECHANICS AND MICROENGINEERING 14 , pp. 597–603, (2004).
    [34] B. Stoeber, D. Liepmann, “Arrays of Hollow Out-of-Plane Microneedles for Drug Delivery, ” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 14, NO. 3, pp.472-478, (2005).
    [35] E.R. Parker, M.P. Rao, K.L. Turner, C.D. Meinhart, N.C. MacDonald, “Bulk Micromachined Titanium Microneedles, ” JOURNAL OF MICROELECTRO -MECHANICAL SYSTEMS, VOL. 16, NO. 2, pp.289-295, (2007).
    [36] 總和生育率,https://zh.wikipedia.org/wiki/%E6%80%BB%E5%92%8C%E7%94%9F%E8%82%B2%E7%8E%87
    [37] 耿繼業,何建娃,幾何光學,全華圖書股份有限公司,台北,(2006)。
    [38] E. Hecht, OPTICS (4th Edition), Addison Wesley, pp.149–155, (2001).
    [39] 葉玉堂,饒建珍,肖峻,幾何光學,五南圖書出版公司,台北,(2008)。
    [40] E. Hecht, OPTICS (4th Edition), Addison Wesley, pp.156–159, (2001).
    [41] APIC 愛發股份有限公司,http://www.apic.com.tw/products/cax_tracepro.html
    [42] K.Y. Hung, F.G. Tseng, H.P. Chou, “Application of 3D gray mask for the fabrication of curved SU-8 structures, ” Microsystem Technologies Volume 11, pp.365-369, (2005).
    [43] AZ Electronic Materials, http://www.az-em.com/
    [44] Virginia Semiconductor Inc, http://www.virginiasemi.com/
    [45] SU-8: Thick Photo-Resist for MEMS, http://memscyclopedia.org/su8.html
    [46] S. Liu, J. Du, X. Duan, B. Luo, X. Tang, Y. Guo, Z. Cui, ” Enhanced dill exposure model for thick photoresist lithography, ”Microelectronic Engineering Volumes 78–79, pp.490–495, (2005).
    [47] MicroChemicals-http://www.microchemicals.eu/technical_information/
    [48] 邱永紳,「利用近接式曝光與立體光罩製作圓錐型微探針陣列模仁成型模擬之研究」,碩士論文,台北 (2012)。
    [49] H. Bleuler, M. Gijs, J. Bibette, C. Guiducci, R. Wimberger-Friedl, ”Dynamic Actuation of Magnetic Beads for Immunoassays on-chip, ”ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE, pp.63, (2010)
    [50] R. Voelkel, M. Eisner, C. Ossmann, K.J. Weible, “ Refractive microlenses for ultraflat photolithographic projection systems, ” Proceedings / Volume 4179 / Applications of Micro-optics I, Santa Clara, CA, USA, Proc. SPIE 4179, pp.130–136, (2000).
    [51] 劉俊宏,「微透鏡仿生複眼影像擷取系統之研究」,碩士論文,國立中興大學,台中 (2010)。
    [52] 闕明珠,「微透鏡陣列製程分析」,碩士論文,國立中央大學,桃園 (2005)。
    [53] 林哲平,「以微影製程開發新型光學微透鏡陣列模仁之研究」,博士論文,國立台灣科技大學,台北 (2004)。
    [54] GM 1060 Datasheet-Gersteltec Sarl, (2005)
    [55] 高功率光纖雷射介紹,http://www.itrc.narl.org.tw/Publication/Newsletter/no81/p10.php
    [56] H.T. Hsieh, V. Lin, J.L. Hsieh, G.-D.J. Su, “Design and fabrication of long focal length microlens arrays, ” Optics Communications 284, pp.5225–5230 , (2011).

    QR CODE