簡易檢索 / 詳目顯示

研究生: 許凱翔
Kai-hsiang Hsu
論文名稱: C頻帶波長可調線性型單縱模光纖雷射之研製
Investigation of C-band Linear-Cavity Tunable Fiber Lasers in Single-Longitudinal-Mode Operation
指導教授: 廖顯奎
Shien-kuei Liaw
口試委員: 黃忠偉
Jong-woei Whang
呂海涵
Hai-han Lu
董正成
Jeng-cherng Dung
徐桂珠
Kuei-chu Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 90
中文關鍵詞: 吸收體布拉格光纖光柵光纖雷射線性型共振腔單縱模子環型共振腔
外文關鍵詞: absorber, fiber Bragg grating, fiber laser, linear cavity, single-longitudinal-mode, sub-ring cavity
相關次數: 點閱:278下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在優化線性型光纖雷射的縱模抑制效果,分別以光纖迴路反射鏡或法拉第旋轉鏡配合光纖光柵當作共振之兩個端面,組成兩種不同結構的光纖雷射;首先從光纖雷射的泵激光源方向開始討論,實驗中採用後向式的泵激架構因為其擁有比前向式的泵激架構還好之模態穩定度和斜線效率。實驗中使用吸收係數為18.79 dB/m@1530 nm,長度為3 m的摻鉺光纖當作增益介質;之後將加入額外兩種不同的模態抑制架構,分別為環型子共振腔和摻鉺光纖吸收體,討論兩種光纖雷射架構的模態頻譜,經由實驗發現,在法拉第旋轉鏡式光纖雷射架構下,使用0.5 m或0.3 m的環型子共振腔分別可發現自由頻譜範圍約428 MHz及714 MHz,而當使用0.17 m的環型子共振腔時其自由頻譜範圍約為1.26GHz,則可以得到單縱模光纖雷射輸出;在另一方面,加入長度為0.5 m,吸收係數較低之摻鉺光纖吸收體到法拉第旋轉鏡式光纖雷射架構中,即可以有單縱模光纖雷射輸出且有高輸出功率。最後,將一個波長可調光纖光柵與法拉第旋轉鏡組成共振腔,配合兩種模態抑制架構,使其光纖雷射波長可以移動14 nm,並且在整個變動波段皆為單縱模光纖雷射的輸出。


    The thesis investigates and optimizes single-longitudinal-mode (SLM) linear cavity erbium-doped fiber lasers (EDFLs). Two fiber lasers based on different cavity-end schemes are presented. There are fiber loop mirror (FLM) integrated fiber Bragg grating (FBG), and Faraday rotator mirror (FRM) integrated FBG. During experiment, backward pumping method is adopted as it has better characteristics in mode stability and slope efficiency than those of forward pumping method. During experiment, absorption coefficient of 18.79 dB/m@1530 nm for gain medium is used to obtain high output power and good signal-to-noise ratio. Consequently, we add either sub-ring cavity (SRC) or absorber as mode-suppressed element into the fiber laser cavity. We find that the FRM-based fiber laser could generate free spectral range (FSR) of 428 MHz and 714 MHz using 0.5-cm and 0.3-cm length SRCs, respectively. Furthermore, SLM fiber laser was obtained using 0.17 m SRC in a FSR of 1.26 GHz. On the other hand, by putting 0.5 m EDF of low absorption coefficient into FRM based fiber laser, SLM operation fiber laser could obtain with high output power. Finally, SLM wavelength-tunable fiber lasers are demonstrated by integration Faraday rotator mirror (FRM) with wavelength-tunable FBG. The laser span range is 14 nm using single FBG. SLM operation may be realized in the whole span range both for FRM-based and FLM-based fiber lasers.

    第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 3 第二章 摻鉺光纖雷射 5 2.1 摻鉺光纖放大原理 5 2.2 摻鉺光纖雷射理論分析 7 2.3 布拉格光纖光柵製作 9 2.4 電頻譜分析儀量測理論 13 2.5 單縱模光纖雷射製作理論分析 15 2.5.1 環型子共振腔架構 16 2.5.2 吸收體型架構 17 第三章 光纖迴路反射鏡式近單縱模光纖雷射 21 3.1 光纖迴路反射鏡原理介紹 21 3.2 光纖迴路反射鏡動作量測 23 3.3 光纖迴路反射鏡式光纖雷射架構量測 25 3.4 光纖迴路反射鏡式近單縱模光纖雷射 31 3.4.1 環型子共振腔架構 31 3.4.2 吸收體型架構 37 3.5 本章小結 40 第四章 法拉第旋轉鏡式單縱模光纖雷射 41 4.1 法拉第旋轉鏡原理介紹 41 4.2 法拉第旋轉鏡式光纖雷射架構量測 44 4.3 法拉第旋轉鏡式單縱模光纖雷射 49 4.3.1 環型子共振腔架構 49 4.3.2 吸收體型架構 54 4.4 本章小結 58 第五章 波長可調單縱模光纖雷射 59 5.1 波長可調之光纖光柵研製 59 5.1.1 波長可調之光纖光柵簡介 59 5.1.2 波長可調之光纖光柵理論 60 5.2 波長可調之光纖雷射 62 5.3 波長可調之單縱模光纖雷射 64 5.4 本章小結 67 第六章 結論與未來展望 68 6.1 結論 68 6.2 未來展望 70 參考文獻 72

    [1] K. C. Kao and G. A. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proc. IEE, vol. 13, pp. 1551-1558, 1966.
    [2] 廖顯奎 譯, “光纖通訊,” 高立圖書有限公司, 台北, 2005。
    [3] G. Keiser, “FTTx Concepts and Application,” New Jersey, USA: Wiley-IEEE Press, 2006.
    [4] 黃鈺勝,“具多優點之混合型光纖放大器研究,” 國立台灣科技大學碩士論文, 2009。
    [5] 鐘國興,“建構於光纖光柵之光纖雷射研製,” 國立台灣科技大學碩士論文, 2007。
    [6] M. A. Haidekker, W. J. Akers, D. Fischer and E. A. Theodorakis, “Optical fiber-based fluorescent viscosity sensor,” Opt. Lett., vol. 31, pp. 2529-2531, 2006.
    [7] Y. Wang, M. Han and A. Wang, “High-speed fiber-optic spectrometer for signal demodulation of inteferometric fiber-optic sensors,” Opt. Lett., vol. 31, pp. 2408-2410, 2006.
    [8] J. D. Downie, A. B. Ruffin and J. Hurley, “Ultra-low-loss optical fiber enabling purely passive 10 Gb/s PON systems with 100 km length,” Opt. Express, vol. 17, pp. 2392-2399, 2009.
    [9] C. C. Lee, Y. K. Chen and S. K. Liaw, “Single-longitudinal-mode fiber laser with a passive multiple-ring cavity and its application for video transmission,” Opt. Lett., vol. 23, pp. 358-360, 1998.
    [10] C. H. Yeh, M. C. Lin and S. Chi, “Stabilized and wavelength-tunable S-band erbium-doped fiber ring laser with single-longitudinal-mode operation,” Opt. Express, vol. 13, pp. 6828-6832, 2005.
    [11] J. Sun, X. Yuan, X. Zhang and D. Huang, “Single-longitudinal-mode fiber ring laser using fiber grating-based Fabry–Perot filters and variable saturable absorbers,” Opt. Commun., vol. 267, pp. 177-181, 2006.
    [12] S. Pan, X. Zhao and C. Lou, “Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier,” Opt. Lett., vol. 33, pp. 764-766, 2008.
    [13] P. C. Becker, N. A. Olsson and J. R. Simpson, “Erbium-doped Fiber Amplifiers: Fundamentals and Technology,” San Diego, USA: Academic Press, 1999.
    [14] Y. Sun, J. L. Zyskind and A. K. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,” J. Select. Areas Quantum Electron., vol.3, pp. 997-1007, 1997.
    [15] C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol., vol. 9, pp. 271–283, 1991.
    [16] C. Barnard, P. Myslinski, J. Chrostowski and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron., vol. 30, pp. 1817–1830, 1994.
    [17] 賴長良, “長波段波長可調光纖雷射之參數優化及研製,” 國立台灣科技大學碩士論文, 2008。
    [18] S. Bordais, S. Grot, Y. Jaouën, P. Besnard and M. L. Flohic, “Double-clad 10-W Yb3+-doped fiber master oscillator power fiber amplifier for He3+ optical pumping,” Appl. Opt., vol. 43, pp. 2168-2174, 2004.
    [19] J. Hecht, “Understanding Fiber Optics,” New Jersey, USA: Prentice Hall, 1999.
    [20] Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming and D. N. Payne, “Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter,” Opt. Lett., vol. 20, pp. 875-877, 1995.
    [21] F. Lie′geois, Y. Hernandez, G. Peigne′, F. Roy and D. Hamoir, “High-efficiency, single-longitudinal-mode ring fibre laser,” Electron. Lett., vol. 41, pp. 729-730, 2005.
    [22] Z. G. Lu and C. P. Grover, “A widely tunable narrow-linewidth triple-wavelength erbium-doped fiber ring laser,” IEEE Photon. Technol. Lett., vol. 17, pp. 22-24, 2005.
    [23] D. Derickson, “Fiber Optic Test and Measurement,” New Jersey, USA: Prentice Hall, 1998.
    [24] B. E. A Saleh, M. C. Teich, “Fundamentals of Photonics,” New Jersey, USA: Wily-Interscience, 2007.
    [25] R. Paschotta, J. Nilsson, L. Reekie, A. C. Trooper and D. C. Hanna, ”Single-frequency ytterbium-doped fiber laser stabilized by spatial hole burning,” Opt. Lett., vol. 22, pp. 40-42, 1997.
    [26] J. Sun, X. Yuan, X. Zhang and Dexiu Huang, “Single-longitudinal-mode dual-wavelength fiber ring laser by incorporating variable saturable absorbers and feedback fiber loops,” Opt. Commun., vol. 273, pp. 231-237, 2007.
    [27] 王祥, “線性型單縱模光纖雷射的研製,” 國立台灣科技大學碩士論文,2010。
    [28] N. Kishi and T. Yazaki, “Frequency control of a single-frequency fiber laser by cooperatively induced spatial-hole burning,” IEEE Photon. Technol. Lett., vol. 11, pp. 182-184, 1999.
    [29] D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol., vol. 6, 1988.
    [30] P. Urquhart, “Compound optical-fiber-based resonators,” J. Opt. Soc. Am. A, vol. 5, pp. 803-812, 1988
    [31] M. Horowitz, R. Daisy and B. Fischer, “Filtering behavior of a self-induced three-mirror cavity formed by intracavity wave mixing in a saturable absorber,” Opt. Lett., vol. 21, pp. 299-301, 1996.
    [32] S. Yamashita, K. Hotate and M. Ito, “Polarization properties of a reflective fiber amplifier employing a circulator and a faraday rotator mirror,” J. Lightwave Technol., vol. 14, pp. 385-390, 1996.
    [33] Y. Takushima, S. Yamashita, K. Kikuchi and K. Hotate, “Polarization-stable and single-frequency fiber lasers,” J. Lightwave Technol., vol. 16, pp. 661-669, 1998.
    [34] P. C. Peng, H. Y. Tseng and S. Chi, “Long-distance FBG sensor system using a linear-cavity fiber Raman laser scheme,” IEEE Photon. Technol. Lett., vol. 16, pp. 575-577, 2004.
    [35] Y. Zhao, C. Yu and Y. Liao, “Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement,” Opt. and Laser Technol., vol. 36, pp. 39-42, 2004.
    [36] W. Bickford, “Mechanics of Solid: Concepts and Applications,” Richard D. Irwin, 1994.
    [37] 江家慶, “以內埋式光纖光柵感測器監測碳纖維複合材料之疲勞損傷,” 國立台灣大學博士論文, 2004。
    [38] 陳宣臣, “波長可調光纖光柵之研製與應用,” 國立台灣大學博士論文, 2004。
    [39] D. Marcuse, “Theory of Dielectric Optical Waveguides,” San Diego, USA: Academic Press, 1974.
    [40] R. Kashyap, “Fiber Bragg Gratings,” San Diego, USA: Academic Press, 1999.
    [41] S. Feng, O. Xu, S. Lu and S. Jian, “Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser based on one polarization-maintaining fiber Bragg grating in linear cavity,” Opt. Eng., vol. 48, 104201, 2009.
    [42] S. A. Havstad, B. Fischer, A. E. Willner and M. G. Wickham, “Loop-mirror filters based on saturable-gain or –absorber gratings,” Opt. Lett., vol.24, pp. 1466-1468, 1999.
    [43] M. Horowitz, R. Daisy, B. Fischer and J. L. Zyskind, “Linewidth-narrowing mechanism in lasers by nonlinear wave mixing,” Opt. Lett., vol.19, pp. 1406-1408, 1994.
    [44] Q. Mao and J. W. Y. Lit, “Switchable multi-wavelength erbium-doped fiber laser with cascaded fiber Grating cavities,” IEEE Photon. Technol. Lett., vol. 14, pp. 612-614, 2002.
    [45] Q. Wang, Y. Wang, W. Zhang, X. Feng, X. Liu and B. Zhou, “Inhomogeneous loss mechanism in multi-wavelength fiber Raman ring lasers,” Opt. Lett., vol. 30, pp. 952-954, 2005.

    QR CODE