簡易檢索 / 詳目顯示

研究生: 李建澤
JIAN-ZE LI
論文名稱: 以鈀奈米顆粒層作為矽晶片黏合之接觸電阻評估
Contact Resistance Evaluation of Bonded Si Wafers Using Pd Nano-Particles as an Intermediate Bonding Layer
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 陳良益
Liang-Yih Chen
王秋燕
Chiu-Yen Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 140
中文關鍵詞: 鈀奈米粒子黏合層
外文關鍵詞: silicon, germanium, palladium nanoparticles, wafer bonding
相關次數: 點閱:243下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文對矽鍺晶片之多重接面太陽能電池之探討,使用鈀奈米粒子做接合層,以進行退火壓合,使兩晶片完成接合。我們利用團聯式共聚物,均勻塗佈於晶片表面,並令其吸附含鈀溶液,成長鈀奈米粒子,再經氫器/氬氣電漿處理後,獲得高還原度的鈀奈米金屬粒子,其粒徑約60 nm且均勻分散於晶片表面,經計算其表面覆蓋率為27%。在此條件下,與另一片矽晶片接合後,測得接合層之接觸電組約在4 Ωcm2,透光損失約1%,高阻抗與壓合環境和粒子成長有關。


    The aim of this study is to develop high efficiency silicon/germanium tandem solar cells. Considering that the silicon cells do not absorb light above 1100 nm, we use a germanium wafer for serialization to compensate for the absorption of the near-infrared solar spectrum.
    We use palladium nanoparticle as the bonding layer to complete the bonding of the two silicon wafers. Palladium nanoparticles layer, prepared by a wet process then go for hydrogen and argon gas plasma treatment to remove oxidations and polymer, was used as an adhesive layer to bond two Si wafers. The reduction ratio is 89% for the palladium nanoparticles layer after plasma treatment. A typical palladium nanoparticle layer, with an average particle size of 70 nm and a surface coverage of about 27%, can successfully bond two wafers together resulted in a contact resistance of 4 Ω-cm2.

    中文摘要 i Abstract ii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 緒論 1 一、 前言 1 二、 研究動機 6 第二章 文獻回顧 7 一、 太陽能電池簡介 7 1. 光電轉換原理 7 2. 矽晶太陽能電池 10 3. 鍺晶太陽能電池 13 4. 多重接面太陽能電池 14 二、 晶圓接合技術 19 1. 晶圓接合簡介 19 2. 晶圓接合技術之發展 20 3. 晶圓接合機制 24 4. 晶圓接合之變數 27 4.1 表面品質 27 4.2 同軸向應力 28 4.3 退火溫度 29 4.4 高溫退火 31 5. 直接接合的優點 33 三、 電漿還原技術 34 1. 電漿技術簡介 34 2. 電漿原理 36 3. 冷電漿[56] 37 4. 電漿設備 39 第三章 實驗方法與步驟 42 一、 實驗藥品與氣體 42 二、 實驗裝置 44 1. 電漿反應腔體及管線配置 44 2. 高溫爐系統壓合裝置 46 3. 金屬蒸鍍機 48 三、 實驗程序 50 1. 矽基材之清洗 50 2. 玻璃基材之清洗 52 3. 接面層製作程序 53 四、 分析儀器 55 1. X射線光電子能譜化學分析儀(X-ray photoelectron spectroscopy) 55 2. 場發射掃瞄式電子顯微鏡 (field emission scanning electron microscope, FE-SEM) 56 3. 原子力顯微鏡(Atomic Force Microscope) 57 4. 紫外光/可見光光譜儀 (UV/VIS) 59 5. 萬用材料試驗機 62 6. 電性量測儀 63 第四章 結果與討論 65 一、 改變溶液反應時間對鈀奈米粒子之影響 66 二、 不同H2/Ar比例對鈀奈米粒子之影響 76 三、 改變電漿瓦數對鈀奈米粒子之影響 86 四、 改變放電間距對鈀奈米粒子之影響 96 五、 改變電漿作用時間對鈀奈米粒子之影響 103 六、 奈米鈀粒子層之電性分析 114 第五章 結論 126 第六章 參考文獻 127

    [1]. Annual Energy Outlook 2018 with projections to 2050, February 2018 U.S. Energy Information Administration Office of Energy Analysis U.S. Department of Energy Washington, DC 20585
    [2]. Chapin, D. M., Fuller, C. S., & Pearson, G. L. (1954). A new silicon p‐n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics, 25(5), 676-677.
    [3]. PHOTOVOLT AICS REPORT, Fraunhofer Institute for Solar Energy Systems, ISE with support of PSE Conferences & Consulting GmbH Freiburg, 19 June 2018
    [4]. Mizuno, H., Makita, K., & Matsubara, K. (2012). Electrical and optical interconnection for mechanically stacked multi-junction solar cells mediated by metal nanoparticle arrays. Applied Physics Letters, 101(19), 191111.
    [5]. Storr, W. (2013). Basic Electronics tutorial site. Website (http://www. electronics-tutorials. ws).
    [6]. Fuhs, W., Niemann, K., & Stuke, J. (1974, May). Heterojunctions of amorphous silicon and silicon single crystals. In AIP Conference Proceedings (Vol. 20, No. 1, pp. 345-350). AIP.
    [7]. Hamakawa, Y., Okamoto, H., & Okuda, K. (1985). U.S. Patent No. 4,496,788. Washington, DC: U.S. Patent and Trademark Office.
    [8]. Dao, V. A., Kim, S., Lee, Y., Kim, S., Park, J., Ahn, S., & Yi, J.(2013) High-Efficiency Heterojunction with Intrinsic Thin-Layer Solar Cells: A Review. Current Photovoltaics Research, 1, 73-81.
    [9]. Tanaka, M., Taguchi, M., Matsuyama, T., Sawada, T., Tsuda, S., Nakano, S., Hanafusa, H & Kuwano, Y. (1992). Development of new a-Si/c-Si heterojunction solar cells: ACJ-HIT (artificially constructed junction-heterojunction with intrinsic thin-layer). Japanese Journal of Applied Physics, 31(11R), 3518.
    [10]. De Wolf, S., Descoeudres, A., Holman, Z. C., & Ballif, C. (2012). High-efficiency silicon heterojunction solar cells: A review. green, 2(1), 7-24.
    [11]. Taguchi, M., Tsunomura, Y., Inoue, H., Taira, S., Nakashima, T., Baba, T., ... & Maruyama, E. (2009, September). High-efficiency HIT solar cell on thin (< 100 μm) silicon wafer. In Proceedings of the 24th European Photovoltaic Solar Energy Conference (pp. 1690-1693).
    [12]. Kaneko, T., & Kondo, M. (2013). Post-annealing Effects on Characteristics of Crystalline Germanium Solar Cells with the Double Heterostructure. Japanese Journal of Applied Physics, 52(4S), 04CR04.
    [13]. Nakano, S., Takeuchi, Y., Kaneko, T., & Kondo, M. (2014). Evaluation of the junction interface of the crystalline germanium heterojunction solar cells. Japanese Journal of Applied Physics, 53(4S), 04ER12.
    [14]. Hekmatshoar, B., Shahrjerdi, D., Hopstaken, M., Fogel, K., & Sadana, D. K. (2012). High-efficiency heterojunction solar cells on crystalline germanium substrates. Applied Physics Letters, 101(3), 032102.
    [15]. Hecht, J. (2012). Photonic Frontiers: High-Efficiency Photovoltaics-Photovoltaics takes small steps on journey to greater efficiency. Laser Focus World, 48(12), 50.
    [16]. Takamoto, T., Washio, H., & Juso, H. (2014, June). Application of InGaP/GaAs/InGaAs triple junction solar cells to space use and concentrator photovoltaic. In Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th(pp. 0001-0005). IEEE.
    [17]. Tibbits, T. N., Beutel, P., Grave, M., Karcher, C., Oliva, E., Siefer, G., ... & Krause, R. (2014, September). New efficiency frontiers with wafer-bonded multi-junction solar cells. In Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition (pp. 1-4).
    [18]. Mathews, I., O'Mahony, D., Thomas, K., Pelucchi, E., Corbett, B., & Morrison, A. P. (2015). Adhesive bonding for mechanically stacked solar cells. Progress in Photovoltaics: Research and Applications, 23(9), 1080-1090.
    [19]. Chiu, P. T., Law, D. C., Woo, R. L., Singer, S. B., Bhusari, D., Hong, W. D., ... & Karam, N. H. (2014). Direct semiconductor bonded 5J cell for space and terrestrial applications. IEEE Journal of Photovoltaics, 4(1), 493-497.
    [20]. Yang, J., Peng, Z., Cheong, D., & Kleiman, R. (2014). Fabrication of high-efficiency III–V on silicon multijunction solar cells by direct metal interconnect. IEEE Journal of Photovoltaics, 4(4), 1149-1155.
    [21]. Sheng, X., Bower, C. A., Bonafede, S., Wilson, J. W., Fisher, B., Meitl, M., ... & Corcoran, C. J. (2014). Printing-based assembly of quadruple-junction four-terminal microscale solar cells and their use in high-efficiency modules. Nature materials, 13(6), 593.
    [22]. http://www.solartr.org/SolarTR2_presentations%5CIvan%20Gordon.pdf
    [23]. Gösele, U., & Tong, Q. Y. (1998). Semiconductor wafer bonding. Annual Review of Materials Science, 28(1), 215-241.
    [24]. Shimbo, M., Furukawa, K., Fukuda, K., & Tanzawa, K. (1986). Silicon‐to‐silicon direct bonding method. Journal of Applied Physics, 60(8), 2987-2989.
    [25]. Bengtsson, S., & Engström, O. (1988). Electronic properties of silicon interfaces prepared by direct bonding. Le Journal de Physique Colloques, 49(C4), C4-63.
    [26]. Wallis, G., & Pomerantz, D. I. (1969). Field assisted glass‐metal sealing. Journal of applied physics, 40(10), 3946-3949.
    [27]. Yamada, A., Kawasaki, T., & Kawashima, M. (1987). SOI by wafer bonding with spin-on glass as adhesive. Electronics Letters, 23(1), 39-40.
    [28]. Bhagat, J. K., & Hicks, D. B. (1987). Bonding of silicon to silicon by solid‐phase epitaxy. Journal of applied physics, 61(8), 3118-3120.
    [29]. Lee, T. M., Lee, D. H., Liaw, C. Y., Lao, A. I., & Hsing, I. M. (2000). Detailed characterization of anodic bonding process between glass and thin-film coated silicon substrates. Sensors and Actuators A: Physical, 86(1-2), 103-107
    [30]. Tong, Q. Y., & Goesele, U. (1999). Semiconductor wafer bonding: science and technology.
    [31]. Maszara, W. P., Jiang, B. L., Yamada, A., Rozgonyi, G. A., Baumgart, H., & De Kock, A. J. R. (1991). Role of surface morphology in wafer bonding. Journal of applied physics, 69(1), 257-260.
    [32]. Plößl, A., & Kräuter, G. (1999). Wafer direct bonding: tailoring adhesion between brittle materials. Materials Science and Engineering: R: Reports, 25(1-2), 1-88.
    [33]. Tong, Q. Y., Schmidt, E., Gösele, U., & Reiche, M. (1994). Hydrophobic silicon wafer bonding. Applied physics letters, 64(5), 625-627.
    [34]. Cho, Y. H., Kim, S. E., & Kim, S. (2013). Wafer Level Bonding Technology for 3D Stacked IC. Journal of the Microelectronics and Packaging Society, 20(1), 7-13.
    [35]. Haisma, J., & Spierings, G. A. C. M. (2002). Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry: historical review in a broader scope and comparative outlook. Materials Science and Engineering: R: Reports, 37(1-2), 1-60.
    [36]. Selwyn, G. S., Herrmann, H. W., Park, J., & Henins, I. (2001). Materials Processing Using an Atmospheric Pressure, RF‐Generated Plasma Source. Contributions to Plasma Physics, 41(6), 610-619.
    [37]. Eliasson, B., & Kogelschatz, U. (1991). Nonequilibrium volume plasma chemical processing. IEEE transactions on plasma science, 19(6), 1063-1077.
    [38]. Hsieh, J. H., Fong, L. H., Yi, S., & Metha, G. (1999). Plasma cleaning of copper leadframe with Ar and Ar/H2 gases. Surface and Coatings Technology, 112(1-3), 245-249.
    [39]. Reitz, U., Salge, J. G. H., & Schwarz, R. (1993). Pulsed barrier discharges for thin film production at atmospheric pressure. Surface and Coatings Technology, 59(1-3), 144-147.
    [40]. Chang, J. S., Lawless, P. A., & Yamamoto, T. (1991). Corona discharge processes. IEEE Transactions on plasma science, 19(6), 1152-1166.
    [41]. Bushra, S. (2011). Investigation of Wafer Level Au-Si Eutectic Bonding of Shape Memory Alloy (SMA) with Silicon.
    [42]. 野中翔一郎, 古川昭雄, & 牧田紀久夫. (2015). スマートスタック技術による多接合太陽電池の接合界面評価 (電子部品・材料). 電子情報通信学会技術研究報告= IEICE technical report: 信学技報, 115(330), 101-104.
    [43]. Krishnamoorthy, S., Pugin, R., Brugger, J., Heinzelmann, H., & Hinderling, C. (2006). Tuning the dimensions and periodicities of nanostructures starting from the same polystyrene‐block‐poly (2‐vinylpyridine) diblock copolymer. Advanced Functional Materials, 16(11), 1469-1475.
    [44]. Aizawa, M., & Buriak, J. M. (2007). Block copolymer templated chemistry for the formation of metallic nanoparticle arrays on semiconductor surfaces. Chemistry of Materials, 19(21), 5090-5101.
    [45]. Huh, M., Gauthier, M., & Yun, S. I. (2017). Monomolecular films of arborescent polystyrene–graft–poly (2-vinylpyridine) copolymers: Precursors to nanostructured carbon materials. European Polymer Journal, 95, 575-580.
    [46]. Aizawa, M., & Buriak, J. M. (2007). Block copolymer templated chemistry for the formation of metallic nanoparticle arrays on semiconductor surfaces. Chemistry of Materials, 19(21), 5090-5101.
    [47]. Mizuno, H., Makita, K., Sugaya, T., Oshima, R., Hozumi, Y., Takato, H., & Matsubara, K. (2016). Palladium nanoparticle array-mediated semiconductor bonding that enables high-efficiency multi-junction solar cells. Japanese Journal of Applied Physics, 55(2), 025001.
    [48]. Yew, T. R., & Reif, R. (1990). Low‐temperature insitu surface cleaning of oxide‐patterned wafers by Ar/H2 plasma sputter. Journal of applied physics, 68(9), 4681-4693.
    [49]. Pedder, D. J., Wort, C. J., & Pickering, K. L. (1991). U.S. Patent No. 5,000,819. Washington, DC: U.S. Patent and Trademark Office.
    [50]. Zou, J. J., Zhang, Y. P., & Liu, C. J. (2006). Reduction of supported noble-metal ions using glow discharge plasma. Langmuir, 22(26), 11388-11394.
    [51]. Hsieh, J. H., & Li, C. (2006). Effects of hollow cathode and Ar/H2 ratio on plasma cleaning of Cu leadframe. Thin Solid Films, 504(1-2), 101-103.
    [52]. Section 8: Metallization Jaeger Chapter 7 EE143 – Ali Javey
    [53]. Kim, S., Geum, D. M., Park, M. S., Kim, C. Z., & Choi, W. J. (2015). GaAs solar cell on Si substrate with good ohmic GaAs/Si interface by direct wafer bonding. Solar Energy Materials and Solar Cells, 141, 372-376.
    [54]. 林敬富, & 吳耀銓. (2013). P 型鍺與 N 型矽晶圓接合介面型態與電性研究 (Doctoral dissertation).
    [55]. MEMS & Microsystems Prof. Santiram Kal Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture No. #30 Wafer Bonding & Packaging of MEMS
    [56]. 張木彬、李灝銘,「電漿處理技術於環境工程之應用與發展趨勢」,國立中央大學環境工程研究所
    [57]. 吳俊諭 國立臺灣科技大學 -矽晶/鍺晶異質接合及晶片黏合技術之研究
    [58]. 秦允豪.《熱學》.高等教育出版社

    QR CODE