簡易檢索 / 詳目顯示

研究生: 陳威帆
Wei-Fan Chen
論文名稱: 直流馬達之適應性順應運動控制研究
Adaptive Compliant Motion Control of DC Motors
指導教授: 黃安橋
An-Chyau Huang
口試委員: 郭有順
Y.S. Kuo
陳亮光
Liang-Kuang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 40
中文關鍵詞:  直流馬達適應性控制函數近似法
外文關鍵詞:  Function Approximation Technique,  DC motors, Adaptive control
相關次數: 點閱:258下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文針對一動力源為直流伺服馬達之系統,在其輸出與環境接觸的情況下,利用函數近似法(Function Approximation Technique)近似不確定項,設計出一適應阻抗控制器,以解決傳統阻抗控制器必須獲得系統精確的模型,且系統之未知參數必須是非時變的,及需使用力感測器迴授接觸力等限制。為確保系統穩定度並選取估測器的更新率(Update Law),我們引用了Lyapunov分析法來進行導證。最終,此法將實際應用於一直流伺服馬達驅動之繪圖機系統,並獲得預期之效能。


Several adaptive impedance controllers are proposed in this thesis based on the function approximation technique for a DC servo motor interacting with the environment. Stable compliant motion can be achieved without the need for the force feedback in the new strategy. Uncertainties in the plant parameters can also be tolerated. The closed loop stability is proved by using the Lyapunov-like technique. Experimental studies justify the feasibility of the proposed controllers.

中文摘要 英文摘要 誌謝 目錄 圖表索引 第一章 緒論 第二章 控制器設計 2.1 系統參數及外力皆已知之阻抗控制器 2.2 當外力為未知時之適應阻抗控制器 2.3 當外力與系統參數皆未知時之適應阻抗控制器 2.4 當外力與系統參數為時變時之適應阻抗控制器 第三章 實驗設備與實驗結果 3.1 實驗架構 3.2 實驗結果 第四章 結論 參考文獻

[1]Slotine, J-J E. and Li, W. “Adaptive strategy in constrained manipulators”, Proceedings of IEEE International Conference on Robotics and Automation, pp595-601, 1987.

[2]Kazerooni, H., Bausch, J. J. and Kramer, “An approach to automated deburring by robot manipulators “, ASME Journal of Dynamic Systems, Measurement, and Control, Vol.108, No.4, pp.354-359, 1986.

[3]Anderson, R. J. and Spong, M.W., “Hybrid impedance control of robotic manipulators”, IEEE Transactions on Robotics and Automation, Vol.4,No.5, pp.549-556, 1988.

[4]Hogan, N.,“Impedance control: an approach to manipulation: Part1-theory, Part2-implementation, Part3-an approach to manipulation” ASME Journal of Dynamic Systems, Measurement, and Control, Vol.107, pp.1-24, 1985.

[5]Kelly, R., Carelli, R., Amestegui, M., and Ortega, R., “An Adaptive Impedance Control of Robot Manipulators”, in Proceedings of IEEE Conference on Robotics and Automation, pp.572-557, 1989.

[6]Spong, M.W. and Vidyasagar, M., Robot Dynamics and Control, J.Wiley, N.Y., 1989.

[7]McClamroch, N.H. and Wang, D., “Feedback stabilization and tracking of constrained robots”, IEEE Transactions on Automatic Control, Vol.33,No.5, pp.419-426, 1998.

[8]Raibert, M. H. and Craig, J. J. “Hybrid position/force control of manipulators”, ASME, Journal of Dynamics Systems, Measurements and Control, Vol.102, pp.126-133, 1981.

[9]Goldenberg, A. A., “Implementation of force and impedance control in robot manipulators”, Proceedings of IEEE International Conference on Robotics and Automation, Vol.3, pp.1626-1632, 1988.

[10]Park, J. H., “Impedance control for biped robot locomotion”, IEEE Transactions on Robotics and Automation, Vol.17,No.6, pp.870-882, 2001.

[11]Wedeward, K., Colbaugh, R., “New stability results for direct adaptive impedance control”, Proceedings of the 1995 IEEE International Symposium on Intelligent Control , pp.281-287, August 1995.

[12]Huang, Li., Ge, S. S. and Lee, T. H. “Neural network based adaptive impedance control of constrained robots”, Proceedings of the 2002 IEEE International Symposium on Intelligent Control, pp.615-619, October 2002.

[13]Huang, A. C. and Kuo, Y.S., “Sliding control of nonlinear systems containing time-varying uncertainties with unknown bounds”, International Jounal of Control, Vol.74, No.3, pp.252-264, 2001.

[14]Yong, Cui and Junku, Yuh., “A unified adaptive force control of under water vehicle-manipulator systems”, Proceedings of the 2003 IEEE International Conference on Intelligent Robots and systems, pp.553-558, October 2003.

[15]Nagchaudhuri, A. and Grag, D. P., “Adaptive control and impedance control for dual robotic arms manipulating a common heavy load”, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp.683-688, July 2001.

[16]Lu, W. S. and Meng, Q. H., “Impedance control with adaptation for robotic manipulations”, IEEE Transactions on Robotics and Automation, Vol.7, No.3, pp.408-415, 1991.

[17]Zeng, R. R.Y. and Goldengerg, A. A., “An adaptive approach to constrained robot motion control”, Proceedings of IEEE International Conference on Robotics and Automation, Vol.2, pp.1833-1838, 1995.

[18]Colbaugh, R., Seraji, H. and Glass, K., “New results in adaptive impedance control of manipulators”, Proceedings of the 32nd IEEE Conference on Decision and Control, Vol.4, pp.3410-3415, 1993.

[19]Gonzalez, J. J. and Widmann, G. R., “A force commanded impedance control scheme for robots with hard nonlinearities”, IEEE Transactions on Control Systems Technology, Vol.3, No.4, pp.398-408, 1995.

[20]Asada, H. and Slotine, J-J. E., Robot Analysis and Control, J. Wiley, N.Y., 1986.

[21]郭有順, 不確定時系變系統之適應控制研究, 國立台灣科技大學機械工程技
術研究所, 博士學位論文, 2002.

[22]羅岳修, 剛性機械手臂之適應阻抗控制, 國立台灣科技大學機械工程研究所,碩士學位論文, 2002.

[23]簡銘志, 以函數近似為基礎之機械臂適應阻抗控制, 國立台灣科技大學機械工程研究所, 碩士學位論文, 2002.

[24]黃安橋, 適應控制理論, 國立台灣科技大學機械工程研究所, 上課講義, 2004.

無法下載圖示 全文公開日期 2011/07/20 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE