簡易檢索 / 詳目顯示

研究生: 鍾瑋芯
Wei-Hsin Chung
論文名稱: 鋰離子電池充電方法之評估
Evaluation of Charging Methods for Li-ion Batteries
指導教授: 劉益華
Yi-Hua Liu
羅一峰
Yi-Feng Luo
口試委員: 邱煌仁
Huang-Jen Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 92
中文關鍵詞: 鋰離子電池等效電路模型定電流定電壓充電法定損失定電壓充電法定功率定電壓充電法
外文關鍵詞: Lithium-ion Battery, Equivalent Circuit Model, Constant Current-Constant Voltage, Constant Loss-Constant Voltage, Constant Power-Constant Voltage
相關次數: 點閱:537下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰離子電池因具高能量及高功率密度特性,適合使用於諸如攜帶式電子產品、再生能源系統及電動車等應用。由於充電方法會影響鋰離子電池之性能及循環壽命,因此發展高品質之充電策略是必要的,而高效能的充電策略需要具備充電效率高、電池溫升低、充電時間短且能延長電池的使用壽命等優點。
    本文提出五種充電方法進行實現及研究,五種充電方法包含三種不同截止端電壓值之定電流定電壓充電法、定損失定電壓充電法及定功率定電壓充電法。本文會實現並比較前面提到之五種充電方法的性能,例如:充電效率、電池溫升、充電時間及循環壽命次數,提供實驗數據讓使用者能更有效率地選擇充電方法。


    Lithium-ion (Li-ion) batteries have an unmatched combination of high energy and power density which make it the technology of choice for portable electronics, renewable energy systems, and electric vehicles. For Li-ion batteries, the charging method has a strong effect on the performance and its cycle life. Hence, it is essential to develop a high-quality charging strategy with high charging efficiency, low temperature-rise, short charging time, and long cycle life.
    In this thesis, five simple charging algorithms for Li-ion batteries will be realized and investigated. These five charging strategies include three constant current-constant voltage (CC-CV) methods with different maximum charging voltage, constant loss-constant voltage (CL-CV) method, and constant power-constant voltage (CP-CV) method. In this study, the aforementioned five charging techniques will be implemented and performance indexes such as charging efficiency, temperature rise, charging time, and cycle-life number will be recorded and compared. This study hopes to serve as a reference for users to effectively choose between different Li-ion charging schemes by applications and requirements.

    摘要 I Abstract II 誌謝 III 目錄 VIII 圖目錄 XI 表目錄 XIV 第一章 緒論 1 1.1 研究背景及動機 1 1.2 文獻探討 2 1.3 論文大綱 5 第二章 二次電池與二次電池充電技術概論 6 2.1 二次電池化學特性及種類 6 2.1.1 鉛酸電池 7 2.1.2 鎳氫電池 8 2.1.3 鋰離子電池 8 2.1.4 二次電池特性比較表 9 2.2 電池相關名詞介紹 10 2.2.1 額定容量(Nominal Capacity) 10 2.2.2 C數(C-rate) 10 2.2.3 額定電壓(Nominal Voltage) 10 2.2.4 自放電(Self-Discharge) 10 2.2.5 完整電池週期(Full Battery Cycle) 11 2.2.6 電池剩餘容量(SOC, State-of-Charge) 11 2.2.7 放電深度(DOD, Depth-of-Discharge) 11 2.2.8 電池健康狀態(SOH, State-of-Health) 11 2.2.9 電池內阻(Internal Resistance) 12 2.2.10 記憶效應 12 2.2.11 循環壽命(Cycle Life) 12 2.3 二次電池充電技術介紹 12 2.3.1 定電壓充電法(Constant Voltage, CV) 13 2.3.2 定電流充電法(Constant Current, CC) 14 2.3.3 定電流-定電壓充電法(Constant Current- Constant Voltage, CC-CV) 14 2.3.4 衍生型定電壓-定電流充電法 15 2.3.5 多階段定電流充電法(Multi-Stage Constant Current Charging, MSCC) 18 2.3.6 脈衝充電法(Pulse Charge) 20 2.4 本文選用之電池介紹 25 第三章 鋰離子電池模型與交流阻抗分析介紹 26 3.1 鋰離子電池模型簡介 26 3.1.1 物理模型(Physical Models) 26 3.1.2經驗模型(Empirical Models) 27 3.1.3抽象模型(Abstract Models) 27 3.2 鋰離子電池交流阻抗分析介紹 30 3.2.1 交流阻抗分析之介紹 30 3.2.2 交流阻抗簡介 32 3.2.3 交流阻抗分析之恆電位偵測 35 3.2.4 交流阻抗分析之實驗規劃 36 3.2.5 交流阻抗之資料分析 41 第四章 本文使用之充電法介紹 43 4.1 定電流定電壓(CC-CV)充電法 43 4.2定損失定電壓(CL-CV)充電法 45 4.3定功率定電壓(CP-CV)充電法 46 4.4 LabVIEW簡介及介面介紹 48 4.4.1 LabVIEW簡介 48 4.4.2 LabVIEW監控介面 49 4.4.3 LabVIEW控制介面 51 4.5 實測環境 52 第五章 實驗結果與分析 53 5.1 取得之交流阻抗參數 53 5.2 本文使用之充電法比較 57 第六章 結論與未來展望 65 6.1 結論 65 6.2 未來展望 66 參考文獻 67

    [1] 羅一峰,「運用田口方法之鋰電池最佳化快速充電波形搜尋」,台灣科技大學電機工程博士論文,民國九十九年八月。
    [2] 陳蓉賢,「以模糊控制為基礎之鋰離子電池模組充電技術開發」,台灣科技大學電機工程碩士論文,民國一零一年七月。
    [3] 柯俊偉,「智慧型電池模組之可程控充電機設計」,台灣科技大學電機工程碩士論文,民國一零一年七月。
    [4] 李易玹,「鋰離子電池新型充電方法之研究」,台灣科技大學電機工程碩士論文,民國一零二年七月。
    [5] 陳重諺,「以交流阻抗為基礎之鋰離子電池殘餘容量估測技術研究」,台灣科技大學電機工程碩士論文,民國一零三年二月。
    [6] 劉俊良,「以模糊田口為基礎之新型電池充電機」,台灣科技大學電機工程博士論文,民國一零三年七月。
    [7] 陳冠炷,「以剩餘容量與模糊溫度控制為基礎之鋰離子電池充電機設計與實現」,台灣科技大學電機工程碩士論文,民國一零三年七月。
    [8] 連于瑄,「具CAN Bus通訊之鋰離子電池容量估測系統」,台灣科技大學電機工程碩士論文,民國一零五年七月。
    [9] 許富昱,「基於模型預測控制之新型鋰離子電池充電演算法」,台灣科技大學電機工程碩士論文,民國一零六年七月。
    [10] 劉元凱,「以電池模型為基礎之五階段定電流充電法最佳充電電流值搜尋」,台灣科技大學電機工程碩士論文,民國一零七年六月。
    [11] 林哲綱,「以模型預測控制為基礎之鋰離子電池充電演算法」,台灣科技大學電機工程碩士論文,民國一零八年六月。
    [12] 林韋盛,「可縮短平衡時間之鋰離子電池組平衡器」,台灣科技大學電機工程碩士論文,民國一零八年六月。
    [13] J. Yan, G. Xu, H. Qian, Y. Xu, and Z. Song, “Model predictive control-based fast charging for vehicular batteries,” Energies, vol.4, no. 7, pp. 1178–1196, Aug. 2011.
    [14] N. Omar, M. Daowd, P. Bossche, O. Hegazy, J. Smekens, T. Coosemans, and J. Mierlo, “Rechargeable energy storage systems for plug-in hybrid electric vehicles—Assessment of electrical characteristics,” Energies, vol.5, no. 8, pp.2952–2988, Aug. 2012.
    [15] K. Shuaib, L. Zhang, A. Gaouda, and M. A. Hafez, “A PEV charging service model for smart grids,” Energies, vol. 5, no. 11, pp.4665–4682, Nov. 2012.
    [16] M. Nguyen, D. Nguyen, and Y. Yoon, “A new battery energy storage charging/discharging scheme for wind power producers in real-time markets,” Energies, vol. 5, no. 12, pp.5439–5452,Dec. 2012.
    [17] J. Shiau, C. Ma, “Li-ion battery charging with a buck-boost power converter for a solar powered battery management system,” Energies, vol. 6, no. 3, pp.1669–1699,Mar. 2013.
    [18] S. S. Zhang, “The effect of the charging protocol on the cycle life of a Li-ion battery,” J. Power Sources, vol. 161, no. 2, pp. 1385–1391, Oct. 2006.
    [19] L. R. Chen, “PLL-based battery charge circuit topology,” IEEE Trans. on Industrial Electronics, vol. 51, no. 6, pp. 1344–1346, Dec. 2004.
    [20] B. P. McGrath, D. G. Holmes, P. J. McGoldrick, and A. D. McIver, “Design of a soft-switched 6-kW battery charger for traction applications,” IEEE Trans. on Power Electronics, vol. 22, no. 4, pp. 1136–1144, July 2007.
    [21] K. M. Tsang, W. L. Chan, “Current sensorless quick charger for Lithiumion batteries,” Energy Conversion and Management 52, 2011, pp.1593-1595.
    [22] P. H. L. Notten, J. H. G. Op het Veld, J. R. G. van Beek, “Boostcharging Li-ion batteries: a challenging new charging concept,” Journal of power Source, vol. 145, no. 1, pp. 89-94, Feb 2005.
    [23] L. R. Chen, R. C. Hsu, and C. S. Liu, “A design of a grey-predicted Lithium-ion battery charge system,” IEEE Transactions on Industrial Electronics, vol. 51, no. 6, June 2004.
    [24] G.C. Hsieh, L.R. Chen, and K. S. Huang, “ Fuzzy controlled Lithium-ion battery charge system with active state of charge controller,” IEEE Transactions on Industrial Electronics, vol. 48, no. 3, June 2001.
    [25] L. R. Chen, J. J. Chen, N. Y. Chu, and G. Y. Han, ”Current pumped battery charger,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2482- 2488, Jun 2008.
    [26] L. R. Chen, C. S. Liu, and J. J. Chen, “Improving phase-locked battery charger speed by using resistance-compensated technique,” IEEE Trans. on Industrial Electronics, vol. 56, no. 4, pp.1205-1211, Apr. 2009.
    [27] L. R. Dung, and J. H. Yen, ” ILP-based algorithm for Lithium-ion battery charging profile,” IEEE International Symposium on Industrial Electronics (ISIE), pp. 2286 – 2291 , July 2010.
    [28] J.W. Huang, Y.H. Liu, S.C. Wang, Z.Z. Yang, “Fuzzy-control-based five-step Lithium-ion battery charger,” IEEE International Conference on Power Electronics and Drive Systems (PEDS), 2009.
    [29] Y. H. Liu, C. H. Hsieh, and Y. F. Luo, “Search for an optimal rapid charging pattern for Li-ion batteries using consecutive orthogonal arrays,” IEEE Trans. Ind. Electron., vol. 26, no. 2, pp. 654–661, 2011.
    [30] Y. H. Liu and Y. F. Luo, “Search for an optimal rapid charging pattern for Li-ion batteries using Taguchi approach,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3963–3971, Dec. 2010.
    [31] Y. H. Liu, J. H. Teng, and Y. C. Lin, “Search for an optimal rapid charging pattern for Li-ion batteries using ant colony system algorithm,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1328–1336, Oct. 2005.
    [32] A. B. Khan, V. L. Pham, T. T. Nguyen, and W. Choi, “Multistage constant-current charging method for Li-ion batteries,” IEEE Transportation Electrification Conference and Expo (ITEC), 2016.
    [33] L. R. Chen, “A design of an optimal battery pulse charge system by frequency-varied technique,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp.398-405, Feb 2007.
    [34] L. R. Chen, “A design of duty-varied voltage pulse charger for improving Lithium-ion battery-charging response”, IEEE Trans. Ind. Electron., vol. 56, no. 2, pp.480-487, Feb. 2009.
    [35] B. K. Purushothama, P. W. Morrison, Jr., and U. Landau, “Reducing mass-transport limitations by application of special pulsed current modes,” Journal of The Electrochemical Society, vol. 152, no. 4, pp. J33-J39, 2005.
    [36] B. K. Purushothama and U. Landau, “Rapid charging of Lithium-ion batteries using pulsed current,” Journal of The Electrochemical Society, vol. 153, no. 3, pp. A533-A542, 2006.
    [37] S. C. Wang and Y. H. Liu, “A PSO-based fuzzy-controlled searching for the optimal charge pattern of Li-Ion batteries,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 2983–2993, May. 2015.
    [38] Z. Y. Chu, X. Feng, L. G. Lu, J. Q. Li, X. B. Han and M. G. Ouyang, “Non-destructive fast charging algorithm of lithium-ion batteries based on the control-oriented electrochemical model,” Journal of applied energy, vol. 204, no. 1, pp. 1240-1250, Mar 2017.
    [39] X. G. Yang, C. Y. Wang, “Understanding the trilemma of fast charging, energy density and cycle life of lithium-ion batteries,” Journal of power sources, vol. 402, no. 1, pp. 489-498, Sep 2018.
    [40] F. Saidani, F. X. Hutter, R. G. Scurtu, W. Braunwarth, and J. N. Burghartz, “Lithium-ion battery models: a comparative study and a model-based powerline communication,” Advances in radio science, vol. 15, no. 1, pp. 83-91, Sep 2017.
    [41] 朱順益,「鋰電池快速充電波型設計」,義守大學電機工程碩士論文,民國九十三年六月。
    [42] 吳敏旭,「串聯電池組電池管理系統之開發」,長庚大學電機工程研究所論文,民國九十三年五月。
    [43] 李嘉猷,「應用DSP於電動車充電站快充控制系統之研究」,國立成功大學電機工程系碩士學位論文,民國九十年六月。
    [44] 屠海令、吳伯榮、朱磊,「先進電池-電化學電源導論」,工業出版社冶金,2006年5月。
    [45] 林季鋒,「應用模糊控覺於正負脈衝充電法之快速充電器」,國立中央大學電機工程系碩士學位論文,民國九十一年六月。
    [46] 趙介雷,「鋰電池特性之研究與其充電器之設計」,大葉大學電機工程系碩士學位論文,民國九十三年六月。
    [47] 建國理工生科所,「行動式電子產品的心臟-二次電池(一)」,http://www.getgoal.com.tw/tech/tech.htm。
    [48] 陳羿廷、陳玉惠,「高分子電解質在鋰二次電池上之應用研究現況」,中原大學化學研究所專題報導,民國九十三年第六十二卷第四期。
    [49] 孫清華,「可充電電池技術大全」,全華科技圖書股份有限公司,2003年9月。
    [50] A. Kirchev, M. Perrin, and E. Lemaire et al, “Studies of the pulse charge of lead-acid batteries for PV applications Part I. Factors influencing the mechanism of the pulse charge of the positive plate,” J. Power Sources, vol. 177, no. 1, pp. 217–225, Feb. 2008.
    [51] P. Thounthong, S. Rael, and B. Davat, “Control algorithm of fuel cell and batteries for distributed generation system,” IEEE Transactions on Energy Conversion, vol. 23, no. 1, pp. 148–155 Mar. 2008.
    [52] G. C. Hsieh, L. R. Chen, and K. S. Huang, “Fuzzy-controlled Li-ion battery charge system with active state-of-charge controller,” IEEE Trans. on Industrial Electronics, vol. 48, no. 3, pp.585-593, Jun. 2001.
    [53] L. R. Chen, R. C. Hsu, and C. S. Liu, “A design of a grey-predicted Li-Ion battery charge system,” IEEE Trans. on Industrial Electronics, vol. 55, no. 10, pp.3692-3701, Oct. 2008.
    [54] L. R. Chen, J. J. Chen, N. Y. Chu, and G. Y. Han, “Current-pumped battery charger,” IEEE Trans. on Industrial Electronics, vol. 55, no. 6, pp.2482-2488, Jun. 2008.
    [55] P. Petchjatuporn, P. Sirisuk, N. Khaehintung, K. Sunat, P. Wicheanchote, and W. Kiranon, “Low cost RISC implementation of intelligent ultra fast charger for Ni–Cd battery,” Energy Conversion and Management, vol. 49, no. 2, pp. 185–192, Feb. 2008.
    [56] B. Y. Chen and Y. S. Lai, “New digital-controlled technique for battery charger with constant current and voltage control without current feedback,” IEEE Trans. on Industrial Electronics, vol. 59, no. 3, pp.1545-1553, Mar. 2012.
    [57] F. J. Lin, M. S. Huang, P. Y. Yeh, H. C. Tsai, and C. H. Kuan, “DSP-based probabilistic fuzzy neural network control for Li-ion battery charger,” IEEE Trans. on Power Electronics, vol. 27, no. 8, pp.3782-3794, Aug. 2012.
    [58] L. R. Chen, “Design of duty-varied voltage pulse charger for improving Li-ion battery-charging response,” IEEE Trans. on Industrial Electronics, vol. 56, no. 2, pp.480-487, Feb. 2009.
    [59] L. R. Chen, S. L. Wu, D. T. Shieh, and T. R. Chen, “Sinusoidal-ripple-current charging strategy and optimal charging frequency study for Li-ion batteries,” IEEE Trans. on Industrial Electronics, vol. 60, no. 1, pp.88-97, Jan. 2013.
    [60] L. R. Chen, J. J. Chen, C. M. Ho, S. L. Wu, and D. T. Shieh, “Improvement of Li-ion battery discharging performance by pulse and sinusoidal current strategies,” IEEE Trans. on Industrial Electronics, vol. 60, pp5620-5628, Dec. 2013.
    [61] Y. H. Liu, J. H. Teng, and Y. C. Lin, “Search for an optimal rapid charging pattern for lithium-ion batteries using ant colony system algorithm,” IEEE Trans. on Industrial Electronics, vol. 52, no. 5, pp.1328-1336, Oct. 2005.
    [62] Y. H. Liu and Y. F. Luo, “Search for an optimal rapid-charging pattern for Li-ion batteries using the Taguchi approach,” IEEE Trans. on Industrial Electronics, vol. 57, no. 12, pp.3963-3971, Dec. 2010.
    [63] Y. H. Liu, C. H. Hsieh, and Y. F. Luo, “Search for an optimal five-step charging pattern for Li-ion batteries using consecutive orthogonal arrays,” IEEE Trans. on Energy Conversion, vol. 26, no. 2, pp.654-661, June. 2011.
    [64] H. J. Chiu, L. W. Lin, P. L. Pan, and M. H. Tseng, “A novel rapid charger for lead-acid batteries with energy recovery,” IEEE Trans. on Power Electronics, vol. 21, no. 3, pp. 640–647, May 2006.
    [65] J. B. Wang and C.Y. Chuang, “Design considerations of microprocessor-controlled multiphase battery charger with fast-charging strategy,” IET on Electric Power Applications, vol. 1, no. 2, pp. 143–152, Mar. 2007.
    [66] C. H. Lin, C. L. Chen, Y. H. Lee, S. J. Wang, C. Y. Hsieh, H. W. Huang, and K. H. Chen, “Fast charging technique for Li-ion battery charger,” Proc. of IEEE Electronics, Circuits and Systems International Conference, pp. 618 – 621, Sep. 2008.
    [67] M. James, J. Grummett, and M. Rowan et al, “Application of pulse charging techniques to submarine lead-acid batteries,” J. Power Sources, vol. 162, no. 2, pp. 878–883, Nov. 2006.
    [68] A. B. Khan, and W. Choi, “Optimal charge pattern for the high-performance multistage constant current charge method for the Li-ion batteries,” IEEE Trans. on Energy Conversion, vol. 33, no. 3, pp.1132-1140, Sep. 2018.
    [69] V. Svoboda, H. Doering, and J. Garche, “The influence of fast charging on the performance of VRLA batteries,” J. Power Sources, vol. 144, no. 1, pp. 244-254, Jun. 2005.
    [70] W. Shen, T. T. Vo, and A. Kapoor, “ Charging algorithm of Lithium-ion batteries: an overview,” 7th IEEE Conference on Industrial Electronics and Applications, pp.1567-1572, July 2012.
    [71] B. Schweighofer, K. M. Raab, and G. Brasseur, “Modeling of high power automotive batteries by the use of an automated test system,” IEEE Trans. Instrum. Meas., vol. 52, no. 4, pp. 1087-1091, Aug. 2003.
    [72] Z. M. Salameh, M. A. Casacca, andW. A. Lynch, “A mathematical model for lead-acid batteries,” IEEE Trans. Energy Convers., vol. 7, no. 1, pp. 93-98, Mar. 1992.
    [73] 蕭子建、王智昱、儲昭偉,「LABVIEW進階篇」,高立圖書,民國八十九年五月。
    [74] 蕭子建、王智昱、儲昭偉,「虛擬儀控程式設計-LABVIEW7X」,高立圖書,民國九十三年三月。
    [75] L. Gao, S. Liu, “Dynamic Lithium-ion battery model for system simulation,” IEEE Trans. on Components and Packaging Technologies, vol. 25, no.3, pp. 495-505, Sep. 2002.

    無法下載圖示 全文公開日期 2022/07/09 (校內網路)
    全文公開日期 2025/07/09 (校外網路)
    全文公開日期 2025/07/09 (國家圖書館:臺灣博碩士論文系統)
    QR CODE