簡易檢索 / 詳目顯示

研究生: TRAN NGUYEN PHUONG LAN
TRAN - NGUYEN PHUONG LAN
論文名稱: 活性污泥之次臨界水解及在次臨界甲醇與醋酸混合溶劑中之轉酯化
ACTIVATED SLUDGE: HYDROLYSIS IN SUBCRITICAL WATER AND TRANSESTERIFICATION IN SUBCRITICAL SOLVENT MIXTURE OF METHANOL AND ACETIC ACID
指導教授: 朱義旭
Yi-Hsu Ju
口試委員: 王孟菊
Meng-Jiy Wang
劉志成
Jhy-Chern Liu
林成原
Cheng Yuan Lin
Felycia Edi Soetared
Felycia Edi Soetared
Suryadi Ismadji
Suryadi Ismadji
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 105
中文關鍵詞: 活性污泥脂質醋酸次臨界水水解生質柴油次臨界溶劑即位轉酯化
外文關鍵詞: acetic acid, activated sludge, biodiesel, hydrolysis, in situ transesterification, lipids, subcritical solvents, subcritical water
相關次數: 點閱:353下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 商業化生質柴油之生產使用精製食用油為原料,造成原料油占生質柴油生產成本之70%到85%;是以有必要尋找便宜且大量之料源以生產生質柴油。本研究利用次臨界水處理代表台灣不同工業之五種汙泥樣品以增加汙泥中可萃取之油脂量。結果發現反應溫度(175oC)為影響可用來與甲醇反應以生產生質柴油之可萃取中性脂質(增加2至4倍)之最重要因素。雖然汙泥樣品來源不同,但是所有汙泥油脂中主要之脂肪酸為C16及C18。
    文獻中大多數以汙泥為原料生產生質柴油之研究都是利用需要長反應時間(約24小時)及高甲醇負載之酸催化轉酯化法。本研究探討利用在次臨界甲醇及醋酸中進行活性污泥之轉酯化,在250oC、使用85%甲醇及15%醋酸為溶劑且溶劑對乾汙泥之比為5mL/g之條件下,可在30分鐘內得到高甲基酯產率(30.11%,以乾汙泥為基準)。與在55oC下使用4%硫酸、25mL/g甲醇對乾汙泥比、需時24小時才能得到35%之甲基酯產率比較,本研究所用之方法避免使用礦物酸,且甲醇使用量及反應時間都顯著減少。


    Commercial production of biodiesel mainly uses refined edible oil as the feedstock which constitutes about 70 % to 85 % of the overall cost of biodiesel. Finding cheap and abundant new feedstock for producing biodiesel is necessary. In this study, subcritical water treatment was employed to enhance the amount of extractable lipid of 5 wet sludge samples collected from a wide spectrum of industries in Taiwan. Reaction temperature (175 oC) was found to be the most important factor in increasing the extractable neutral lipids (by 2 to 4 times) which can be esterified with methanol to produce biodiesel. This study found that although activated sludge samples were collected from various sources; however, C16 and C18 fatty acids are the dominant components in all activated sludge oils.
    Most previous studies reported in literature on biodiesel production from sludge were carried out by acid catalyzed transesterification that required long reaction time (about 24 h) and high methanol loading. Transesterification of activated sludge in mixture of subcritical methanol and acetic acid was investigated in this study. At a reaction temperature of 250 oC, high methyl esters yield (30.11%, based on dry activated sludge) can be obtained in 30 min by using a mixture of 85% methanol and 15% acetic acid as the solvent and a solvent to dry sludge ratio of 5 mL.g-1. Compared to the 35% methyl ester yield obtained by acid-catalyzed (4% H2SO4) transesterification which required 24 h at 55 oC and using a methanol to dry sludge ratio of 25 mL.g-1, the method developed in this study avoided using mineral acid, required significantly less methanol and much shorter reaction time.

    摘要 i ABSTRACT ii ACKNOWLEDGEMENTS iii TABLE OF CONTENTS iv LIST OF ABBREATIONS vii LIST OF TABLES viii LIST OF FIGURES ix CHAPTER 1 INTRODUCTION 1 1.1 Background of the study 1 1.2 The objectives of the study 4 CHAPTER 2 LITERATURE REVIEW 5 2.1 Introduction to biodiesel 5 2.1.1 What is biodiesel? 5 2.1.2 A historical review of biodiesel 6 2.1.3 Biodiesel-an alternative fuel 6 2.1.4 Current status of the biodiesel and trend of world biodiesel consumption 9 2.1.5 Advantages and disadvantages of biodiesel 12 2.2 Biodiesel production process 12 2.2.1 Catalytic transesterification 15 2.2.2 Non-catalytic transesterification 17 2.3 Biodiesel feedstock 19 2.4 Activated sludge 21 2.4.1 Activated sludge and activated sludge treatment process 21 2.4.2 Composition of activated sludge 22 2.4.3 Current status of sludge production in Taiwan 23 2.4.4 Activated sludge as biomass source 24 2.4.4.1 Electricity production in microbial fuel cells 24 2.4.4.2 Incineration of sludge 24 2.4.4.3 Pyrolysis of sludge 25 2.4.4.4 Gasification of sludge 26 2.4.5 Bioethanol from activated sludge 26 2.4.6 Biodiesel from activated sludge 27 2.4.6.1 Sludge treatment 27 2.4.6.2 Extraction and analysis of crude lipid 28 2.4.6.3 Synthesis of biodiesel 30 2.4.6.4 Economic analysis of biodiesel production 32 2.4.7 Other application of activated sludge 34 2.5 Subcritical water 35 CHAPTER 3 EXPERIMENTAL METHODS 38 3.1 Chemicals and apparatus 38 3.2 Characterization of activated sludge 38 3.2.1. Sludge preparation 38 3.2.2. Water content of activated sludge 39 3.2.3. Sludge oil extraction 39 3.2.2.1 Soxhlet extraction 39 3.2.2.2 SCW pretreatment of sludge prior to extraction 40 3.2.4. Dewaxing and degumming of crude sludge oil 40 3.2.5. Determination of lipid and FAs compositions 41 3.3 In situ subcritical transesterification 42 3.4 In situ acid-catalyzed transesterification 44 3.5 Determination ofbiodiesel yield by HTGC 46 3.6 Determination of FAs profiles by LTGC 46 CHAPTER 4 RESULTS AND DISCUSSION 48 4.1 Characteristic of activated sludge 48 4.1.1 Moisture content 48 4.1.2 Extraction lipids without SCW treatment 48 4.1.3 Effect of SCW pretreatment on extractable crude lipids 51 4.1.3.1 Effect of temperature 51 4.1.3.2 Effect of time 54 4.1.3.3 Effect of pressure 55 4.1.4 Response of activated sludge from various sources 55 4.1.5 Effectiveness of SCW treatment on extraction oil 59 4.2 Biodiesel from dried activated sludge 61 4.2.1 Effect of reaction time on FAME yield 62 4.2.2 Effect of methanol to sludge ratio on FAME yield 64 4.2.3 Effect of AA on FAME yield 66 4.2.4 Advantages of using subcritical methanol and AA 70 CHAPTER 5CONCLUSION AND FUTURE PROSPECTS 72 REFERENCES 74 APPENDIX A 87 CURRICULUM VITAE 90

    Ahmad, M., Khan, M.A., Zafar, M., Sultana, S., 2012. Practical handbook on biodiesel production and properties. CRC Press, NewYork.
    Aikins, G.P., Heath, A., Mentzer, R.A., Mannan, M. S., Rogers, W.J., Halwagi, M.M.E., 2010. A multi-criteria approach to screening alternatives for converting sewage sludge to biodiesel.
    J. Loss Prev. Process Ind. 23, 412-420.
    Alam, M.Z., Kabbashi, N.A., Razak, A.A., 2007. Liquid state bioconversion of domestic wastewater sludge for bioethanol production. IFMBE Proceedings 15, pp. 479-482.
    Alenezi, A., Leeke, G.A., Santos, R.C.D., Khan, A.R., 2009. Hydrolysis kinetics of sunflower oil under subcritical water conditions. Chem. Eng. Res. Des. 87, 867–873
    Al-Qodah, Z., Shawabkah, R., 2009. Production and characterization of granular activated carbon from activated sludge. Braz. J. Chem. Eng. 26, 127-136.
    Amit S., 2012. Biodiesel: Production and Properties. The Royal Society of Chemistry, Cambridge.
    Anderson, S., 2004.Soxtec: its principles and applications. In: Luthria, D.L. (Ed.), Oil Extraction and Analysis-Critical Issue and Comparative Studies. AOCS Press, Champaign, Ill., p. 14.
    Atabani, A.E., Silitonga, A.S., Badruddina, I.A., Mahlia, T.M.I., Masjuki, H.H., Mekhilef, S., 2012. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew. Sust. Energ. Rev. 16, 2070-2093.
    Atadashi, I.M., Aroua, M.K., Aziz, A.R.A., Sulaiman, N.M.N., 2012. High quality biodiesel obtained through membrane technology. J. Membr. Sci. 421-422, 154-164.
    Balat, M., 2011. Potential alternatives to edible oils for biodiesel production – A review of current work. Energy Conv. Manag. 52, 1479-1492.
    Bharathiraja, B., Yogendran, D., Kumar, R. R., Chakravarthy, M., Palani, S., 2014. Biofuels from sewage sludge- A review. Int. J. Chem. Tech. Res. 6, 4417-4427.
    Bomani, B.M.M., Bulzan, D.L., Centeno-Gomez, D.I., Hendricks, R.C., 2009. Biofuels as an alternative energy source for aviation - A survey. Glenn Research Center, Cleveland, Ohio, NASA/TM—2009-215587.
    Boocock, D.G.B., Konar, S.K., Leung, A., Ly, L.D., 1992. Fuels and chemicals from sewage sludge: 1. The solvent extraction and composition of a lipid from a raw sewage sludge. Fuel 71, 1283-1289.
    Cao, W.L., Han. H.W., Zhang, J.C., 2005. Preparation of biodiesel from soybean oil using supercritical methanol and co-solvent. Fuel 84, 347-351.
    Cardenas-Toro, F.P., Alcazar-Alay, S.C., Forster-Carneiro, T., Meireles, M.A.A., 2014. Obtaining oligo- and monosaccharides from agroindustrial and agricultural residues using hydrothermal treatments. Food and Public Health 4, 123-139.
    Cavka, A., Alriksson, B., Rose, S.H., Zyl, W.H.V., Jonsson, L.J., 2014. Production of cellulosic ethanol and enzyme from waste fiber sludge using SSF, recycling of hydrolytic enzymes and yeast, and recombinant cellulose producing Aspergillusniger. J. Ind. Microbiol. Biotechnol. 41, 1191-1200.
    Changi, S., Matzger, A.J., Savage, P.E., 2012. Kinetics and pathways for an algal phospholipid (DOPC) in high-temperature (175-350oC) water. Green Chem. 14, 2856–2867.
    Chen, Y., Jiang, S., Yuan, H., Zhou, Q., Gu, G., 2007. Hydrolysis and acidification of waste activated sludge at different pHs. Water Res. 41, 683-689.
    Chincholkar, S.P., Srivastava, S., Rehman, A., Dixit, S., Lanjewar, A., 2005. Biodiesel as an alternative fuel for pollution control in diesel engine. Asian J. Exp. Biol. Sci. 19, 13-22.
    Chipasa, K.B., Medrzycka, K., 2008. Characterization of the fate of lipids in activated sludge. J. Environ. Sci. 20, 536-542.
    Choi, O.K., Song, J.S., Cha, D.K., Lee, J.W., 2014. Biodiesel production from wet municipal sludge: Evaluation of in situ transesterification using xylene as a cosolvent. Bioresour. Technol. 166, 51-56.
    Daud, N.M., Abdullah, A.R.S., Hasan, H.A., Yaakob, Z., 2015. Production of biodiesel and its wastewater treatment technologies: A review. Process Saf. Environ. Protect. 94, 487-508.
    Demirbas, A., 2005. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog. Energy Combust. Sci., 31, 446-487.
    Deshpande, P., Kulkarni, K., Kulkarni, A.D., 2011. Supercritical fluid technology in biodiesel production: A review. Journal of Chemistry and Materials Research 1.
    Dufreche, S., Hernandez, R., French, T., Sparks, D., Zappi, M., Alley, E., 2007. Extraction of lipids from municipal wastewater plant microorganisms for production of biodiesel. J. Am. Oil Chem. Soc 84, 181-187.
    Eevera, T., Rajendran, K., Saradha, S., 2009. Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions. Renew. Energy 34, 762-765.
    Encinar, J.M., Gonza´lez, J.F., Sabio, E., Ramiro, M.J., 1999. Preparation and properties of biodiesel from Cynara cardunculus L. Oil.Ind. Eng. Chem. Res. 38, 2927-2931.
    Encinar, M., Pardal, A., Martínez, G., 2012. Transesterification of rapeseed oil in subcritical methanol conditions. Fuel Process. Technol. 94, 40–46.
    Fan, X., Burton, X., 2009. Recent development of biodiesel feedstocks and the applications of glycerol: A review. Open Fuel Energ. Sci. J. 2, 100-109.
    FAO, The State of Food and Agriculture, Part I: Biofuels: Prospects, Risks and Opportunities (2008), Chapter 2 - The biofuels life cycle: energy balances and greenhouse gas emissions, pp15-18.
    Fonts, I., Azuara, M., Gea, G., Murillo, M.B., 2009. Study of the pyrolysis liquids obtained from different sewage sludge. J. Anal. Appl. Pyrolysis 85, 184–191.
    Feedman, B., Butterfield, R.O., Pryde, E.H., 1986. Transesterification kinetics of soybean oil1. J. Am. Oil Chem. Soc. 63, 1375-1380.
    Fujii, T., Khuwijitjaru, P., Kimura, Y., Adachi, S., 2006. Decomposition kinetics of monoacyl glycerol and fatty acid in subcritical water under temperature-programmed heating conditions. Food Chem. 94, 341-347.
    Fytili, D., Zabaniotou, A., 2008. Utilization of sewage sludge in EU application of old and new methods—A review. Renew. Sust. Energ. Rev. 12, 116-140.
    Galkin, A.A., Lunin, V.V., 2005. Subcritical and supercritical water: a universal medium for chemical reactions. Russ. Chem. Rev. 74, 21.
    Gerhard, N.S., Cea, M., Risco, V., Navia, R., 2015. In situ biodiesel production from greasy sewage sludge using acid and enzymatic catalysts. Bioresour. Technol. 179, 63-70.
    Gerpen, J.V., 2005. Biodiesel processing and production. Fuel Process. Technol. 86, 1097-1107.
    Goo, A.W., Liu, Y.T., Ju, Y.H., 2014. Applicability of subcritical water treatment on oil seeds to enhance extractable lipid. BioEnergy Res. 7, 711-719.
    Goff, M.J., Bauer, N.S., Lopes, S., Sutterlin, W.R., Suppes, G.J., 2005. Acid catalyzed alcoholysis of soybean oil. J. Am. Oil Chem. Soc. 81, 415-420.
    Gui, M.M., Lee, K.T., Bhatia, S., 2008. Feasibility of edible oil vs non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 33, 1646–1653.
    King, J.W., Holliday, R.L., List, G.R., 1999. Hydrolysis of soybean oil in a subcritical waterflow reactor. Green Chem. 1, 261-264.
    Kramer, P., Vogel, H., 2000. Hydrolysis of esters in subcritical and supercritical water. J. Supercrit. Fluids 16, 189-206.
    Kumar, S., 2013. Sub-and supercritical water technology for biofuels, in : Lee, J.W. (Ed.), Advances biofuels and bioproducts. Springer, pp 147-183.
    Han, W., Wang, Z., Chen, H., Yao, X., Li, Y.F., 2011. Simultaneous biohydrogen and bioethanol production from anaerobic fermentation with immobilized sludge. J. Biomed. Biotechnol. 2 011, http://dx.doi.org/10.1155/2011/343791.
    Hensarling, T.P., Jacks, T.J., 1983. Solvent extraction of lipids from soybeans with acidic hexane. J. Am. Oil Chem. Soc. 60, 783-784.
    Holliday, R.L., Y.M. Jong, B., Kolis, J.W., 1998. Organic synthesis in subcritical water: Oxidation of alkyl aromatics. J. Supercrit. Fluids 12, 255-260.
    Holliday, R.L., King, J.W., List, G.R., 1997. Hydrolysis of vegetable oils in sub- and supercritical water. Ind. Eng. Chem. Res. 36, 932-935.
    Huang, Y.H, Wu, J.H., 2008. Analysis of biodiesel promotion in Taiwan. Renew. Sust. Energ. Rev. 12, 1176-1186.
    Huynh, L. H., Kasim, N. S., Ju, Y. H., 2010. Extraction and analysis of neutral lipids from activated sludge with and without subcritical water pre-treatment. Bioresour. Technol. 101, 8891-8896.
    Huynh, L.H., Do, Q.D., Kasim, N.S., Ju, Y.H., 2011. Isolation and analysis of wax esters from activated sludge. Bioresour. Technol. 102, 9518-9523.
    Huynh LH, 2011. PhD thesis: Isolation and analysis of neutral lipid and wax esters from activated sludge, NTUST, Taiwan.
    Huynh, L.H., Tran-Nguyen, P.L., Ho, Q.P., Ju, Y.H., 2012. Catalyst-free fatty acid methyl ester production from wet activated sludge under subcritical water and methanol condition. Bioresour. Technol. 123, 112-116.
    Jaeger, M., Mayer, M., 2000. The Noell conversion process—A gasification process for the pollutant free disposal of sewage sludge and the recovery of energy and materials. Water Sci. Technol. 41, 37–44.
    Jardé, E., Mansuy, L., Faure, P., 2005. Organic markers in the lipidic fraction of sewage sludges. Water Res. 39, 1215-1232.
    Judex, J.W., Gaiffi, M., Burgbacher, H.C. Gasification of dried sewage sludge: Status of the demonstration and the pilot plant. Waste Manage. 32, 719-723.
    Kafuku, G., Mbarawa, M., 2013. Influence of fatty acid profiles during supercritical transesterification of conventional and non-conventional feedstocks: A review. Am. J. Analyt. Chem. 4, 469-475.
    Kibazohi, O., Sangwan, R.S., 2011. Vegetable oil production potential from Jatropha curcas, Croton megalocarpus, Aleurites moluccana, Moringa oleifera and Pachira glabra: assessment of renewable energy resources for bio-energy production in Africa. Biomass Bioenerg. 35, 1352–1356.
    Kim, H.J., Kang, B.S., 2004. Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catal. Today 93-95, 315-320.
    Kim, W.J., Kim, J., Veriansyah, B., Kim, J.D., Lee, Y.W., Oh, S.G., Tjandrawinata, R.R., 2009. Extraction of bioactive components from Centella asiatica using subcritical water. J. Supercrit. Fluids 48, 211-216.
    Knothe, G., 2010. Introduction, in: Knothe, G., Krahl, J., Gerpen, J.V., (Ed.), The Biodiesel Handbook, AOCS Press, Softbound, p 1.
    Kumar, M., Sharma, M.P., 2014. Potential assessment of microalgal oils for biodiesel production. J. Mater. Environ. Sci. 5, 757-766.
    Kusdiana, D., Saka, S., 2001. Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel 80, 693–698.
    Lee, D.J., 2007. South Asia and China, in: L. Spinosa (Ed.), Wastewater Sludge: A Global overview of the current status and future prospects, IWA Publishing Ltd., pp. 27.
    Levine, R. B., Pinnarat, T., Savage, P.E., 2010. Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification. Energ. Fuels 24, 5235–5243.
    Li, S., Wang, Y., Dong, S., Chen, Y., Cao, F., Chai, F., Wang, X., 2009. Biodiesel production from Eruca Sativa Gars vegetable oil and motor: emissions properties. Renew. Energy 34, 1871–1876.
    Lin, L., Dong, Y., Sumpun, C., Saritporn, V., 2009. Biodiesel production from crude rice bran oil and properties as fuel. Appl. Energy 86, 681-688.
    Lin, K.L., Lin, C.Y., 2005. Hydration characteristics of waste sludge ash utilized as raw cement material. Cem. Concr. Res. 35, 1999-2007.
    Long, R.D., Abdelkader, E., 2011. Mixed-Polarity azeotropic solvents for efficient extraction of lipids from Nannochloropsis microalgae. Am. J. Biochem. Biotechnol.7, 70-73.
    Luque, R., Melero, J.A., 2012. Advances in biodiesel production: Process and technologies. Woodhead Publishing, ISBN: 978-0-85709-117-8
    Martin, M.J., Artola, A., Balaguer, M.D., Rigola, M., 2003. Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions. Chem. Eng. J. 94, 231–239.
    Mata, T.M., Martins, A.A., Caetano, N.S., 2010. Microalgae for biodiesel production and other applications: A review. Renew. Sust. Energ. Rev. 14, 217-232.
    Mondala, A., Liang, K., Toghiani, H., Hernandez, R., French, T., 2009. Biodiesel production by in situ transesterification of municipal primary and secondary sludges. Bioresour. Technol. 100, 1203-1210.
    Monyem, A., Van, G.J.H., Canakcl, M., 2001. The effect of timing and oxidation on emissions from biodiesel–fueled engines. Am. Soc. Agric. Eng., p.44.
    Murugesan, A., Umarani, C., Chinnusamy, T.R., Krishnan, M., Subramanian, R., Neduzchezhain, N., 2009. Production and analysis of bio-diesel from non-edible oils – a review. Renew. Sust. Energ. Rev. 13, 825-834.
    Mythili, R., Venkatachalam, P., Subramanian, P., Uma, D., 2014. Production characterization and efficiency of biodiesel: a review. Int. J. Energ Res. 38, 1233-1259.
    Nautiyal, P., Subramanian, K.A., Dastidar, M.G., 2014. Production and characterization of biodiesel from algae. Fuel Process. Technol. 120, 79-88.
    Nielsen, P.M., Brask, J., Fjerbae, L., 2008. Enzymatic biodiesel production: technical and economical considerations. Eur. J. Lipid Sci. Technol. 110, 692-700.
    Olkiewicz, M., Caporgno, M.P., Fortuny, A., Stüber, F., Fabregat, A., Font, J., Bengoa., C., 2014. Direct liquid–liquid extraction of lipid from municipal sewage sludge for biodiesel production. Fuel Process. Technol. 128, 331-338.
    Olkiewicz, M., Fortuny, A., Stüber, F., Fabregat, A., Font, J., Bengoa, C., 2015. . Effects of pre-treatments on the lipid extraction and biodiesel production from municipal WWTP sludge. Fuel 141, 250-257.
    Pérez, M.A., Aracil, I., Fullana, A., 2013. Biodiesel production by transesterification of sludge in supercritical conditions. Fuel 109, 427–431
    Pryde, E.H., Freedman, B., Mounts, T.L., 1981. Variables affecting the yields of fatty esters from transesterified vegetable oils. J. Am. Oil Chem. Soc. 61, 1638-1643.
    Ramadhas, A.S., 2008. Biodiesel production technologies and substrates, in Pandey, A., (Ed.), Handbook of Plant-Based Biofuels. CRC Press, pp 183-198.
    Rasa, M., Girbal-Neuhausera, E., Paulb, E., Spe´randiob, M., Lefebvre, D., 2008. Protein extraction from activated sludge: An analytical approach. Water Res. 42, 1867-1878.
    Reveille, V., Mansuy, L., Jarde´, E., Sillam, E.G., 2003. Characterisation of sewage sludge-derived organic matter: lipids and humic acids. Org. Geochem. 34, 615-627.
    Revellame, E., Hernandez, R., French, W., Holmes, W., Alley, E., 2010. Biodiesel from activated sludge through in-situ transesterification. J. Chem. Technol. Biotechnol. 85, 614-620.
    Revellame, E., Hernandez, R., French, W., Holmes, W., Alley, E., Callahan II, R., 2011. Production of biodiesel from wet activated sludge. J. Chem. Technol. Biotechnol. 86, 61-68.
    Revellame, E.D., Hernandez, R., French, W., Holmes, W.E., Benson, T.J., Pham, P.J., Forksa, A., Callahan II, R., 2012. Lipid storage compounds in raw activated sludge microorganisms for biofuels and oleochemicals production. RSC Adv. 2, 2015-2031.
    Robus, C.L.L, 2013. PhD thesis: Production of bioethanol from paper sludge using simultaneous saccharification and fermentation, Stellenbosch University.
    Rulkens, W., 2008. Sewage sludge as a biomass resource for the production of energy: Overview and assessment of the various options. Energ. Fuels 22, 9-15.
    Saka, S., Isayama, Y., Ilham, Z., Jiayu, X., 2010.New process for catalyst-free biodiesel production using subcritical acetic acid and supercritical methanol. Fuel 89, 1442-1446.
    Scott, G.M., Smith, A., Abubakr, S., 1995. Sludge characteristic and disposal alternatives for recycled fiber plants, Recycling Symposium, TAPPI Proceedings.
    Sengo, I., Gominho, J., Orey, L., Martins, M., Duarte, E.A., Pereira, H., Dias, S.F., 2010. Response surface modeling and optimization of biodiesel production from Cynaracardunculus oil. Eur. J. Lipid Sci. Technol. 112, 310-320.
    Shin, H.Y., Ryu, J.H., Park, S.Y., Bae, S.Y., 2012. Thermal stability of fatty acids in subcritical water. J. Anal. Appl. Pyrolysis 98, 250-253.
    Siddiquee, M.N., Rohani, S., 2011. Lipid extraction and biodiesel production from municipal sewage sludges: a review. Renew. Sustain. Energy Rev. 15, 1067–1072.
    Siddiquee, M.N., Rohani, S., 2011. Experimental analysis of lipid extraction and biodiesel production from wastewater sludge. Fuel Process.Technol. 92, 2241-2251.
    Su, R., Zhang, W.F., Wang, E.Q., Zhu, M.C., Shi, P.H., Li, D.X., 2015. Optimized process for efficiently extraction protein from excess activated sludge by Alcalase hydrolysis.Advances in Computer Science, Environment, Ecoinformatics, and Education. International Conference, CSEE 2011, Proceedings, Part II, pp 89-95.
    Taruya, T., Okuno, N.,Kanaya, K., 2002. Reuse of sewage sludge as raw material of Portland cement in Japan. Water Sci. Technol. 46, 255–258.
    Tay, J.H., Chen, X.G., Jeyasseelan, S., Graham, N., 2001. A comparative study of anaerobically digested and undigested sewage sludges in preparation of activated carbons. Chemosphere 44, 53–57.
    Toor, S.S., Rosendahl, L., Rudolf, A., 2011. Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy 36, 2328-2342.
    Tran-Nguyen, P.L., Go, A.W., Huynh, L.H., Ju, Y.H., 2013. A study on the mechanism of subcritical water treatment to maximize extractable cellular lipids. Biomass Bioenerg. 59, 532-539.
    Tsai, W.Y., Lin, C.C., Yeh, C.W., 2007. An analysis of biodiesel fuel from waste edible oil in Taiwan. Renew. Sust. Energ. Rev. 11, 838-857.
    Tsai, W.T., 2012. An analysis of waste management policies on utilizing biosludge as material resources in Taiwan. Sustainability 8, 1879-1887.
    Tsigie, Y.A., Huynh, L.H., Ahmed, I.N., Ju, Y.H., 2012. Maximizing biodiesel production from Yarrowia lipolytica Po1g biomass using subcritical water pretreatment. Bioresour. Technol. 111, 201-207.
    Tsigie, Y.A., Huynh, L.H., Tran-Nguyen, P.L., Ju, Y.H., 2013. Catalyst-free biodiesel preparation from wet Yarrowia lipolytica Po1g biomass under subcritical condition. Fuel Process. Technol. 115, 50-56.
    Tyagi, V.K., Lo, S.L., 2013. Sludge: A waste or renewable source for energy and resources recovery? Renew. Sust. Energ. Rev. 25, 708-728.
    Wang, N.Y., Shih, C.H., Chiueh, P.T., Huang, Y.F., 2013. Environmental effects of sewage sludge carbonization and other treatment alternatives. Energies 6, 871-883.
    Wang, Z., Mei, X., Ma, J., Wu, Z., 2012. Recent advances in microbial fuel cells integrated with sludge treatment. Chem. Eng. Technol. 35, 1733-1743.
    Wang, X., 2008. Master thesis: Feasibility of glucose recovery from municipal sewage sludges as feedstocks using acid hydrolysis, Queen's University, Kingston, Ontario, Canada.
    Wei., C.Y., Huang, T.C., Chen, H.H., 2013. Biodiesel production using supercritical methanol with carbon dioxide and acetic acid. J.Chem.,2013, http://dx.doi.org/10.1155/2013/789594.
    Wen, D.S., Jiang, H., Zhang, L., 2009. Supercritical fluids technology for clean biofuel production. Prog. Nat. Sci. 19, 273-284.
    Yaakob, Z., Mohannad, M., Alherbawi, M., Alam, Z., Sopian, K., 2013. Overview of the production of biodiesel from waste cooking oil. Renew. Sust. Energ. Rev. 18, 184-193.
    Yin, J.Z., Xiao, M., Wang, A.Q., Xiu, Z.L., 2008. Synthesis of biodiesel from soybean oil by coupling catalysis with subcritical methanol. Energy Conv. Manag. 49, 3512-3516.
    Yusuf, N.N.A.N., Kamarudin, S.K., Yaakub, Z., 2011. Overview on the current trends in biodiesel production. Energy Conv. Manag. 52, 2741–2751.

    Websites
    Activated sludge, Lesson 11: Disinfection of wastewater, http://water.me.vccs.edu/courses/env149/asludge.htm
    Biodiesel America’s Advanced Biofuel, what is biodiesel? http://www.biodiesel.org/what-is-biodiesel/biodiesel-basics.
    Biodiesel fuel, http://www.alternative-energy-news.info/technology/biofuels/biodiesel-fuel/
    Environmental effects of biodiesel fuel, http://www.berkeleybiodiesel.org/comprehensive-guide-environmental-effects-biodiesel.html.
    Green facts – Facts on health and the environment, Liquid biofuels for transport prospects, ricks and opportunities, http://www.greenfacts.org/en/biofuels/l-3/4-environmental-impacts.htm
    History of Biodiesel Fuel, http://www.biodiesel.com/biodiesel/history/
    Industrial waste report and management system, http://waste.epa.gov.tw/prog/IndexFrame.asp?Func=5
    International Energy Agency, April 2011, http://www.iea.org/newsroomandevents/pressreleases/2011/april/biofuels-can-provide-up-to-27-of-world-transportation-fuel-by-2050-iea-report-.html
    Pacific biodiesel, A clean Burning Alternative Fuel From Renewable Resources, History of Biodiesel Fuel, http://www.biodiesel.com/biodiesel/history/
    Sustarsic, M., 2009. Wastewater Treatment: Understanding the activated sludge process. Tetra Tech NUS, www.aiche.org/cep.
    World Bank Group, Activated sludge treatment process, http://water.worldbank.org/shw-resource-guide/infrastructure/menu-technical-options/activated-sludge.
    Why gasification of sewage sludge is better than spreading it on land, February 2009, http://gasificationsewagesludg40.blogspot.tw/2009/02/why-gasification-of-sewage-sludge-is.html.
    http://water.worldbank.org/shw-resource-guide/infrastructure/menu-technical-options/activated-sludge.
    http://web.deu.edu.tr/atiksu/toprak/ani4131.html
    http://www.chemical-ecology.net/java/solvents.htm

    QR CODE