簡易檢索 / 詳目顯示

研究生: 李俊豪
Chun-hao Li
論文名稱: 雙波長固態雷射源研製與加工製程最佳化之研究
Study of solid-state laser source implementation and laser beam machining optimization
指導教授: 蔡明忠
Ming-jong Tsai
口試委員: 廖運炫
Yunn-shiuan Liao
蔡傳暉
Chwan-huei Tsai
湯華興
Hwa-hsing Tang
唐永新
Yeong-shin Tarng
鄭正元
Jeng-ywan Jeng
學位類別: 博士
Doctor
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 107
中文關鍵詞: Q-開關雷射源二極體幫浦固態雷射雷射加工灰關聯分析多重品質特徵
外文關鍵詞: Q-switched, laser source, diode-pumped solid-state laser, laser beam machining, grey relational analysis, multiple performance characteristics
相關次數: 點閱:429下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究乃針對雙波長Q開關二極體幫浦固態雷射進行雷射源系統研製,並使用灰關聯分析用於雷射加工製程之最佳化探討。近年來,多樣製程雷射應用已越來越普及,大多使用1064nm或532nm雷射來達成適當地品質以滿足不同需求。首先,本研究提出單一機台可快速切換式模組的雙波長1064/532nm雷射源,供使用於多樣工業製程需求以節省空間與成本。此雙波長雷射源使用內腔1.2mm對稱拋光洞孔且5mm長之光欄以獲得所需雷射光之品質,以及高線性度與重複精度之滑台來承載1064 nm與 532 nm兩波長雷射源的兩前腔模組以達成快速切換與雷射光輸出穩定。從雙波長1064/532nm模組雷射源的實驗結果中,顯示出雙波長皆可成功地獲得良好的雷射光單模態品質。並且在10k~35kHz之不同重複頻率操作下,這1064/532nm雷射光斑成功表現出相似的雷射平均功率與脈寬。
此外,本研究利用Q開關二極體幫浦固態雷射與灰關聯分析在加工製程最佳化應用包括(1)特殊曲線的快閃記憶體模組之雷射切割最佳化;(2)薄膜電晶體液晶顯示器的短路環之雷射劃線隔離最佳化。上述雷射切割應用使用灰關聯分析於切割表面品質之粗糙度與熱效應區追求皆小之多重品質特徵製程要求下,在已匹配達成基本產出速度要求下,由8組實驗結果顯示得到Q開關重複頻率是最重要因子。而在短路環之雷射劃線隔離最佳化方面應用灰關聯分析於劃線隔離品質之溝槽寬度與濺出小丘寬度追求皆小之多重品質特徵製程要求下,在製程固定產出速度要求下,由8組實驗結果顯示有關雷射單模輸出之孔徑光欄控制參數是最重要因子。灰關聯度的分析可找出參數的顯著性與雷射加工製程的最佳參數組合;並可經由額外的最佳參數組合之確認實驗來驗證其效果。所以結合雷射加工技術與灰關聯分析可快速且有效的得到新製程應用之最佳參數組合。


This study focuses on implementation of two wavelengths Q-switched diode-pumped solid-state laser (DPSSL) source and multi-objective optimization for two kinds of laser beam machining (LBM) using grey relational analysis (GRA). Many laser machining processes need a 1064 nm or 532 nm laser source to obtain suitable quality for satisfying different requirements. Firstly, this work proposes a single laser source module with a Q-switched diode-pumped Nd:YAG laser that can be quickly switched between 1064 or 532 nm wavelength generation, and can be used for multiple processes in industrial applications for space and cost savings. By using an intra-cavity aperture of 1.2 mm diameter with 5 mm length, and using high linear and high repetition accuracy slide stage to load both the back cavity modules of 1064/532nm wavelengths, the experimental results of the 1064/532 nm module demonstrate that a high laser beam TEM00 quality is successfully obtained. The measured average powers and durations of the 1064/532 nm laser source module were similar under operating repetition rates from 10 kHz~35 kHz.
Secondly, the Q-switched DPSSL and grey relational analysis (GRA) are used for machining applications which include (1) optimization of laser cutting for flash memory modules with special shapes by using GRA; and (2) optimization of laser scribing isolation for short-circuit rings of TFT-LCDs by using GRA. When satisfying the requirement for manufacturing speed, the GRA multiple characteristics of laser cutting process for flash memory with special shapes were the smaller-the-better for the roughness and the heat effect zone (HAZ). The most important control factor is the Q-switched repetition rate from the analytical results of 8 experiments. When the manufacturing speed is fixed, the GRA multiple characteristics of laser scribing isolation process for LCD short-rings were the smaller-the-better for the widths of groove and hillock, the most important control factor is the aperture pinhole diameter for single mode of laser quality from the analytical results of 8 experiments. Analysis of the grey relational grade indicates parameter significance and the optimal parameter combination for the LBM can be identified to verify the performance by extra-confirmation experiments. Therefore, the integration of LBM technology and the GRA method can be effectively applied on new processing applications.

摘要 III Abstract IV 致謝 V 符號表 IX 圖表索引 XII Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation and objectives 1 1.3 Literatures review 2 1.4 Organization of this thesis 5 Chapter 2 Design of laser systems 7 2.1 Introduction 7 2.2 Laser source systems 9 2.2.1 Solid-state laser materials 10 2.2.2 Diode-pumped module 11 2.2.3 Resonant cavity and mode parameters 12 2.2.4 Acousto-optic Q-switching 15 2.2.5 Intra-cavity second harmonic generation 17 2.2.6 Beam propagation ratio 18 2.3 Beam delivery systems 19 2.3.1 Beam shaping systems 19 2.3.2 Galvanometric XY axis scanning 21 2.3.3 Nozzle focuser system 23 2.4 Focusing optical systems 25 2.4.1 F-theta lens system 26 2.4.2 Focusing and depth of focus 27 2.5 Design of quick-change output coupler for 1064/ 532 nm wavelength generation 27 Chapter 3 Implementation of DPSS laser sources 28 3.1 Introduction 28 3.2 A quick-change output coupler for 1064 nm / 532 nm wavelength generation 28 3.2.1 Optical alignment 32 3.2.2 Moving knife-edge method for M2 34 3.2.3 Experimental results and discussion 35 3.3 A Q-switched side-pumped Nd:YAG laser for 1064 nm wavelength generation 37 3.4 A Q-switched side-pumped Nd:YAG laser for 355 nm wavelength generation 38 3.5 A Q-switched end-pumped Nd:YVO4 laser for 1064 nm wavelength generation 42 Chapter 4 Grey relational analysis 44 4.1 Introduction 44 4.2 The mathematical foundation of grey relational analysis 44 4.2.1 Factor space 44 4.2.2 The comparison of sequence 45 4.2.3 The four axioms of grey relational measurement 45 4.3 The localization grey relational coefficient 45 4.4 Grey generating 46 4.5 Grey relational coefficient and grade 46 Chapter 5 Optimization of laser beam machining using GRA 48 5.1 Introduction 48 5.2 Laser cutting for flash memory modules with special shapes 49 5.2.1 Laser cutting system 53 5.2.2 Grey relational analysis 56 5.2.3 Experimental results and discussion 58 5.3 Laser isolation for thin film short-circuit rings of TFT-LCDs 64 5.3.1 Laser scribing system 67 5.3.2 Grey relational analysis 72 5.3.3 Experimental results and discussion 74 Chapter 6 Conclusions and future works 80 6.1 Conclusions 80 6.2 Future works 81 References 82 作者簡介 90 授權書 92

Bai, R.S., Technicality handbook of printed circuit boards, Taiwan Printed Circuit Association, Taoyuan, Taiwan, Ver. 3rd, pp. 321-322 (2000)
Black, I., and Chua, K. L., “Laser cutting of thick ceramic tile”, Optics & Laser Technology, Vol. 29, No.4, pp. 193-205 (1997)
Buzas, A., and Geretovszky, Z., “Patterning ZnO layers with frequency doubled and quadrupled Nd:YAG laser for PV application”, Thin Solid Films, 515, pp. 8495-8499 (2007)
Caydas, U., and Hascalik A., “Use of the grey relational analysis to determine optimum laser cutting parameters with multi-performance characteristics”, Opt Laser Technol, 40(7), pp. 987–994 (2008)
Chen, Y. H., Tam, S. C., Chen, W. L., and Zheng, H. Y., “Application of Taguchi method in the optimization of laser micro-engraving of photomasks”, International Journal of Materials & Product Technology, 11 (3/4), pp. 333-344 (1996)
Chiang, K. T., and Chang, F. P., “Optimization of the WEDM process of particle-reinforced material with multiple performance characteristics using grey relational analysis”, Journal of Materials Processing Technology, 180, pp. 96-101 (2006)
Compaan, A. D., Matulionis, I., and Nakade, S., “Laser scribing of polycrystalline thin films”, Optics and Lasers in Engineering, 34, pp. 15-45 (2000)
Deng, J. L., “Control problems of grey systems”, Syst. Contr Lett 5, pp. 288-294 (1982)
Dubey, A. K., and Yadava, V., “Multi-objective optimisation of laser beam cutting process”, Optics & Laser Technology, 40(3), pp. 562-570 (2008a)
Dubey, A. K., and Yadava, V., “Laser beam machining— a review”, Int J Mach Tools Manuf 48(6), pp. 609-628 (2008b)
Dubey, A. K., and Yadava, V., “Multi-objective optimization of Nd:YAG laser cutting of nickel-based superalloy sheet using orthogonal array with principal component analysis”, Optics and Lasers in Engineering, 46, pp. 124-132 (2008c)
Dziedzic, A., Kolek, A., Ehrhardt, W., and Thust, H., “Advanced electrical and stability characterization of untrimmed and variously trimmed thick-film and LTCC resistors”, Microelectronics Reliability, 46, pp. 352-359 (2006)
Ferreira, L. O. S., and Moehlecke, S., “A micromechanical galvanometric scanner”, Sensor and Actuators, 73, pp. 252-260 (1999)
Fung, C. P., “Manufacturing process optimization for wear property of fiber-reinforced polybutylene terephthalate composites with grey relational analysis”, Wear, 254, pp. 298-306 (2003)
Ghamsari, M. S., “A simple approach to designation of the intracavity resonator for
second harmonic Nd:YAG laser”, Optics & Laser Technology, 39, pp. 225-230 (2007)
Grudzien, W., Sonntag, A., and Seliger, G., “Operating system for laser scanners”, Journal of Materials Processing Technology, 76, pp. 69-75 (1998)
Hecht, J., The laser guidebook, McGraw-Hill, New York, p 44 (1986)
He, F., Huang, L., Gong, M., Liu, Q., and Yan, X., “Stable acousto-optics Q-switched Nd:YVO4 laser at 500 kHz Laser”, Phys. Lett., 4, pp. 511-514 (2007)
Hong, L., Li, L., and Ju, C., “Investigation of cutting of engineering ceramics with Q-switched pulse CO2 laser”, Optics and Lasers in Engineering, 38, pp. 279-289 (2002)
ISO 13694, Optics and optical instruments-Lasers and laser-related equipment-Test methods for laser beam power [energy] density distribution, Ver.1rd (2000)
ISO 17526, Optics and optical instruments-lasers and laser-related equipment- lifetime of lasers, Ver. 1rd (2003)
ISO 11670, Lasers and laser-related equipment-test methods for laser beam parameters-beam positional stability, Ver. 2nd (2003)
ISO 11146-3, Lasers and laser-related equipment- Test methods for laser beam widths, divergence angles and beam propagation ratios- Part 3: Intrinsic and geometrical laser beam classification, propagation and details of test methods, Ver. 1st (2004)
ISO 11145, Optics and photonics–Lasers and laser-related equipment–Vocabulary and symbols (2006)
Johnson, R. V., Design and Fabrication of Acousto-Optic Devices, Marcel Dekker, New York, pp. 129-130 (1994a)
Johnson, R. V., Design and fabrication of acousto-optic devices, Marcel Dekker, p 131 (1994b)
Joshi, R., “Chip on glass-interconnect for row/column driver packaging”, Microelectronics Journal, 29, pp. 343-349 (1997)
Kaldos, A., Pieper, H. J., Wolf, E., and Krause, M., “Laser machining in die marking – a modern rapid tooling process”, Journal of Materials Processing Technology, 155-156, pp. 1815-1820 (2004)
Kao, P. S., and Hocheng, H., “Optimization of electrochemical polishing of stainless steel by grey relational analysis”, Journal of Materials Processing Technology, 140, pp. 255-9 (2003)
Kasap, S. O., Optoelectronics and photonics, Prentice-Hall, pp. 311-313 (2000)
Kofler, H., Tauer, J., Tartar, G., Iskra, K., Klausner, J., Herdin, G., and Wintner, E., “An innovative solid-state laser for engine ignition”, Laser Phys. Lett., 4, pp. 322-327 (2007)
Kuhn, K. J., Laser engineering, Prentice- Hall, pp. 62-73 (1998a)
Kuhn, K. J., Laser Engineering, Prentice-Hall, pp. 101-114 (1998b)
Kuhn, K. J., Laser Engineering, Prentice-Hall, pp.209-221 (1998c)
Kuhn, K. J., Laser engineering, Prentice- Hall, p 312 (1998d)
Lai, H. H., Lin, Y. C., and Yeh, C. H., “Form design of product image using grey relational analysis and neural network models”, Comput Oper Res, 32, pp. 2689-711 (2005)
Laikin, M., Lens design, Marcel Dekker, p 159-233 (2001)
Lee, S., Kim, Y. G., Cha, B. H., and Kim, Y. K., “A diode-pumped linear intracavity frequency doubled Nd:YAG rod laser with 40 ns pulse width and 73W green output power”, Optics & Laser Technology, 36, pp. 265-271 (2004)
Li, C. H., Tsai, M. J., Lee, C. H., Chen, R., and Hong, S. W., “Cutting for QFN Packaging by Diode Pumping solid state laser system”, Semiconductor Manufacturing Technology Workshop Proceedings, HsinChu, Taiwan (2004), doi:10.1109/SMTW.2004.1393743.
Li, C. H., and Tsai, M. J., “Solid state laser trimming technology for embedded thick film resistances of RAM printed circuit board”, Proceedings of the 13th Automation Technology Conference, Taipei, Taiwan, POSTER II, P 34 (2004)
Li, C., Nikumb, S., and Wong, F., “An optimal process of femtosecond laser cutting of NiTi shape memory alloy for fabrication of miniature devices”, Optics and Lasers in Engineering, 44, pp. 1078-87 (2006)
Li, Chen Hao., Tsai, M. J., and Yang, C. D., “Study of optimal laser parameters for cutting QFN packages by Taguchi’s matrix method”, Optics & Laser Technology, 39(4), pp. 786-95 (2007)
Li, C. H., and Tsai M. J., “Multi-objective optimization of laser cutting for flash memory modules with special shapes using grey relational”, Optics & Laser Technology, doi:10.1016/j.optlastec.2008.09.009 (2008)
Li, C. H., and Tsai, M. J., “3D Laser Trimming Technology for Regulating Embedded Thick-film Carbon Resistors on a Random Access Memory Module”, Journal of Materials Processing Technology, 209, pp. 2057-2067 (2009)
Li, H., and Zeng, X., “A study on embedded resistor components fabricated by laser micro-cladding and rapid prototype”, Material Science and Engineering B, 133, pp. 84-90 (2006)
Li, L., “The advances and characteristics of high-power diode laser materials processing”, Optics and Lasers in Engineering, 34, pp. 231-253 (2000)
Lim, S. H., Lee, C. M., and Chung, W. J. “A study on optimal cutting condition of a high speed feeding type laser cutting machine by using Taguchi method”, International Journal of Precision Engineering and Manufacturing, 7(1), pp. 18-23 (2006)
Lin, J. L., and Lin, C. L., “The use of the orthogonal array with grey relational analysis to optimize the electrical discharge machining process with multiple performance characteristics”, Int J Mach Tools Manuf, 42, pp. 237-44 (2002)
Lin, D. H., “Technical manual of printed wiring board for integrated circuit”, Taiwan Printed Circuit Assocation, Taoyuan, Taiwan, pp. 161-167 (2003)
Liu, J., Du, C., Wang, Z., Zhu, L., Zhang, H., Meng, X., Wang, J., Shao, Z., and Jiang, M., “Diode-pumped Q-switched Nd : GdVO4 KTP green laser formed with a .at–.at resonator”, Optics & Laser Technology, 33, pp. 177-180 (2001)
Lu, M., and Wevers, K., “Grey system theory and applications:a way forward”, J Grey Syst, 10(1), pp. 47-54 (2007)
Malyavanatham, G., O’Brien, D. T., Becker, M. F., Nichols, W. T., Keto, J. W., and Kovar, D., “Thick films fabricated by laser ablation of PZT microparticles”, Journal of Materials Processing Technology, 168, pp. 273-279 (2005)
Marshall, G. F., Laser beam scanning: opto-mechanical devices, systems, and data storage optics, Marcel Dekker, pp. 225-236 (1985)
Menozzi, M., Napflin, U., and Krueger, H., “CRT versus LCD: A pilot study on visual performance and suitability of two display technologies for use in office work”, Displays, 20, pp. 3-10 (1999)
Meunier, M., Gagnon, Y., Savaria, Y., Lacourse, A., and Cadotte, M., “A novel laser trimming technique for microelectronics”, Applied Surface Science, 186, pp. 52-56 (2002)
Mukhopadhyay, P. K., Ranganathan, K., Sharma, S. K., Gupta, P. K., and Nathan, T. P. S., “Experimental study of simultaneous end-pumping to a diode-side-pumped intracavity frequency doubled Q-switched Nd:YAG laser”, Optics Communications, 256, pp. 139-148 (2005)
Murakami, T., and Togari, H., “Electrostatic problems in TFT-LCD production and solution using ionization”, EOS/ESD Symposium Proceeding, pp. 365-370 (1996)
Ostermeyer, M., and Menzel, R., “Single rod efficient Nd:YAG and Nd:YALO lasers with average output powers of 46 and 47 W in diffraction limited beams with M2-1.2 and 100 W with M2-3.7”, Optics Communications, 160, pp. 251-254 (1999)
Pan, L. K., Wang, C. C., Wei, S. L., and Sher, H. F., “Optimization multiple quality characteristics via Taguchi method-based grey analysis”, Journal of Materials Processing Technology, 182, pp. 107-116 (2007)
Pietro, P. D., Yao, Y. L., and Jeromin, A., “Quality optimization for laser machining under transient conditions”, Journal of Materials Processing Technology, 97, pp. 158-167 (2000)
Quan, Z., and Ling, Z., “LBO intracavity frequency doubled, Cr:YAG passively Q-switched Nd:YAG green laser”, Optics & Laser Technology, 34, pp. 239-241 (2002)
Quintero, F., Pou, J., Lusquinos, F., Boutinguiza, M., Soto, R., and Perez, A. M., “Quantitative evaluation of the quality of the cuts performed on mullite-alumina by Nd:YAG laser”, Optics and Lasers in Engineering, 42, pp. 327-40 (2004)
Ready, J. F., and Farson, D. F., LIA handbook of laser materials processing, Laser Institute of America, Orlando, Florida, p 17 (2001a)
Ready, J.F., and Farson, D.F., LIA handbook of laser material processing, Laser Institute of America, Orlando, Florida, p 174 (2001b)
Ready, J. F., and Farson, D. F., LIA handbook of laser materials processing, Laser Institute of America, Orlando, Florida, p 230 (2001c)
Ready, J. F., and Farson, D. F., LIA handbook of laser materials processing, Laser Institute of America, Orlando, Florida, p 427 (2001d)
Ready, J. F., and Farson, D. F. LIA handbook of laser materials processing, Laser Institute of America, Orlando, Florida, p 456 (2001e)
Ready, J. F., and Farson, D. F., LIA handbook of Laser Material Processing, Laser Institute of America, Orlando, Florida, pp. 583-588 (2001f)
Robbins, A. H., and Miller, W. C., Circuit Analysis Theory and Practice, Thomson Delmar Learning, New York, pp. 42-43 (1995)
Roelants, E., “High density laser blind vias in production”, IPC Printed Circuit Expo, Long Beach, California, S08 (1998)
Saleh, B. E. A., and Teich, M. C., Fundamentals of photonics, John Wiley & Sons, p 328. (1991)
Shanjin, L., and Yang, W., “An investigation of pulsed laser cutting of titanium alloy sheet”, Optics and Lasers in Engineering, 44, pp. 1067-77 (2006)
Shin, B. S., Oh, J. Y., and Sohn, H., “Theoretical and experimental investigations into laser ablation of polyimide and copper films with 355-nm Nd:YVO4 laser”, Journal of Materials Processing Technology, 187-188, pp. 260-263 (2007)
Siegman, A. E., Lasers, University Science Books, CA, 19, p. 751 (1986)
Singh, A. P., and Kapoor, A., and Tripathi, K. N., “Recrystallization of germanium surface by femtosecond laser pulses”, Optics & Laser Technology 35, pp. 87-97 (2003)
Singh, P. N., Raghukandan, K., and Pai, B. C., “Optimization by grey relational analysis of EDM parameters on machining Al—10%SiCp composites”, Journal of Materials Processing Technology, 155-156, pp. 1558-61 (2004)
Smith, W. J., Modern optical engineering, McGraw-Hill, p 134 (1991)
Taghizadeh, M. R., Blair, P., Balluder, K., Waddie, A. J., Rudman, P., and Ross, N., “Design and fabrication of diffractive elements for laser material processing applications”, Optics and Lasers in Engineering, 34, pp. 289-307 (2000)
Tam, S. C., Lim, L. E. N., and Quek, K. Y., “Application of Taguchi method in the optimization of the laser-cutting process”, Journal of Materials Processing Technology, 29, pp. 63-74 (1992)
Tam, S. C., Yeo, C. Y., Jana, S., Lau, W. S., Lim, E. N., and Yang, L. J., “Optimization of laser deep-hole drilling of Inconel 718 using the Taguchi method”, International Journal of Materials Processing Technology, 37, pp. 741-757 (1993)
Tarng, Y. S., Juang, S. C., and Chang, C. H., “The use of grey-based Taguchi methods to determine submerged arc welding process parameters in hardfacing”, Journal of Materials Processing Technology, 128, pp. 1-6 (2002)
Tsai, C. H., and Huang, B. W., “Diamond scribing and laser breaking for LCD glass substrates”, Journal of Materials Processing Technology, 198, pp. 350-358 (2008)
Venkatakrishnan, K., Tan, B., and Ngoi, B. K. A., “Femtosecond pulsed laser ablation of thin gold film”, Optics & Laser Technology, 34, pp. 199-202 (2002)
Verdeyen, J. T., Laser Electronics, Prentice-Hall, NJ, pp. 35-43 (1995)
Wang, H., Huang, W., Zhou, Z., and Cao, H., “Experimental study of a high power and high efficiency CW diode-side-pumped Nd:YAG laser”, Optics & Laser Technology, 36, pp. 69-73 (2004)
Wang, Y., Huang, L., Gong, M., Zhang, H., Lei, M., and He, F., “1 MHz repetition rate single-frequency gain-switched Nd:YAG microchip laser”, Laser Phys. Lett., 4, pp. 580-583 (2007)
Wang, X. C., Li, Z. L., Chen, T., Lok, B. K., Low, D. K. Y., “355nm DPSS UV laser cutting of FR4 and BT/epoxy-based PCB substrates”, Optics and Lasers in Engineering, 46, pp. 404-9 (2008)
Wilson, J., and Hawkes, J. F. B., Optoelectronics An introduction, Prentice- Hall International (UK) Limited, pp. 99-100 (1989a)
Wilson, J., and Hawkes, J. F. B., “Optoelectronics An introduction”, Prentice- Hall International (UK) Limited, p 178 (1989b)
Wilson, J., and Hawkes, J. F. B., Optoelectronics An introduction, Prentice- Hall International (UK) Limited, p 182 (1989c)
Xiang, J., Wu, Z., Zhang, P., Huang, D., and Wei, G., “The precision improvement of the scanner in optical scanning imaging system”, Optics & Laser Technology, 30, pp. 109-112 (1998)
Xu, D. G., Yao, J. Q., Zhang, B. G., Zhou, R., Li, E., Zhao, S. Y., Ding, X., Wen, W. Q., Niu, Y. X., Hu, J. G., and Wang, P., “110 W high stability green laser using type II phase matching KTiOPO4 (KTP) crystal with boundary temperature control”, Optics Communications, 245, pp. 341-347 (2005)
Yariv, A., and Yeh, P., Optical waves in crystals, John Wiley & Sons, p 318 (1983)
You, M. L., Wang, C. W., and Yeh, C. K., “The development of completed grey relational analysis toolbox via Matlab”, Journal of Grey System, 9(1), pp. 57-64 (2006)
Yu, G. I., and Ta, H. I., Optical engineering, Mechanic Industry, pp. 150-153 (1999)
Yu, D. L., and Tang, D. Y., “Experimental study of a high-power CW side-pumped Nd:YAG laser”, Optics & Laser Technology, 35, pp. 37-42 (2003)
Yussuf, A. A., Sbarski, I., Solomon, M., Tran, N., and Hayes, J. P., “Sealing of polymeric-microfluidic devices by using high frequency electromagnetic field and screen printing technique”, Journal of Materials Processing Technology, 189, pp. 401-408 (2007)
Zhang, B., and Yung, K. C., “Frequency-tripled Nd:YAG laser ablation in laser structuring process”, Optics and Lasers in Engineering, 44, pp. 815-25 (2006)
Zhao, J., Huettner, B., and Menschig, A., “Microablation with ultrashort laser pulse”, Optics & Laser Technology, 33, pp. 487-491 (2001)
Zheng, H., Gan, E., and Lim, G. C., “Investigation of laser via formation technology for the manufacturing of high density substrates”, Optics and Lasers in Engineering, 36, pp. 355-71 (2001)
Zhou, R., Cai, Z., Wen, W., Ding, X., Wang, P., and Yao, J., “High-power continuous-wave Nd:YAG laser at 946 nm and intracavity frequency-doubling with a compact three-element cavity”, Optics Communications, 255, pp. 304-308 (2005)
Zuo, C. H., Zhang, B. T., He, J. L., Dong, X. L., Yang, K. J., Huang, H. T., Xu, J. L., Zhao, S., Dong, C. M., and Tao, X. T., “13.2 W cw output generated by a diode-end-pumped Nd:GGG laser”, Laser Phys. Lett., 5, pp. 719-721 (2008)

QR CODE