簡易檢索 / 詳目顯示

研究生: 陳玉甄
Yu-jhen Chen
論文名稱: 幾何設計與材料對於鎖定螺絲與骨髓內釘之彎曲強度影響
The effects of the geometry and materials on the bending strength of the locking screws and locked nails
指導教授: 趙振綱
Ching-kong Chao
口試委員: 劉見賢
none
林晉
Jinn Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 126
中文關鍵詞: 生物力學分析股骨螺絲鎖定式骨髓內釘疲勞
外文關鍵詞: Biomechanical analyses, locking screws, locked nails, fatigue
相關次數: 點閱:219下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

目前市面上鎖定式骨髓內釘已被廣泛的利用在治療下肢長骨骨折,因其擁有將骨折處附近的軟組織傷害減到最低,並且穩定骨折處的優點。在臨床的應用上,鎖定螺絲最常發生的破壞模式為破斷與鬆脫,而骨髓內釘最常發生破壞的地方位於內釘上的螺絲孔,造成了骨折固定的失效、延遲癒合或不癒合。根據目前的研究,在市面上的植入物,包括鎖定螺絲與鎖定內釘,由於幾何設計變異性較大且材質不同,故無法公平地去比較。因此,本研究自行設計與製作螺絲與內釘,藉此評估植入物的幾何設計參數與材料對機械性能的影響。
在本研究中,股骨鎖定螺絲以生物力學分析,包括生物力學測試與有限元素分析,來評估十六種螺絲設計。藉由降伏測試與疲勞測試來評估彎曲強度,並利用三維有限元素分析來模擬生物力學測試的結果。而在鎖定內釘的生物力學分析中,設計十二種內釘模型,利用三維有限元素分析來模擬彎曲強度。
由股骨螺絲之生物力學分析結果中得知,當股骨螺絲的內徑越大、根部導圓角半徑越大,則有較高的降伏負載及疲勞強度。若股骨螺絲為鈦合金,則疲勞壽命會明顯提升。而生物力學實驗與有限元素模擬有不錯的相關係數,故可利用有限元素分析來準確預估生物力學測試結果。而鎖定內釘在外徑較大以及內釘上的螺絲孔徑較小時,有較低的最大張應力。
本論文中,股骨螺絲與鎖定內釘的幾何參數與研究成果,可提供往後工程界或醫學界研發人員,創新與設計新型植入物的重要參考與依據。


An interlocking nail, which has advantages of minimal soft tissue injury and stable fracture fixation, has been widely used to treat femoral shaft fracture. In clinical application, screw breakage and screw loosening are two main failure modes and nail hole is the weakest portion of an interlocking nail. These breakdowns may cause loss of fracture fixation, delayed union, and non-union. According to the previous researches, the commercial available implants including locking screws and interlocking nails were used in their study, but those implants with the different dimensions and materials could not be fairly compared. Therefore, in this study, the screws and nails are specially designed and manufactured. The effects of design geometry and materials on the mechanical performance of the locking screws and nails are investigated.
In biomechanical analyses of femoral locking screws, sixteen types of locking screws were designed and manufactured. The bending strength was assessed by yielding tests and fatigue tests. Three-dimensional finite element models were established to simulate the results of biomechanical tests. In biomechanical analyses of interlocking nails, twelve types of interlocking nails were designed. Three-dimensional finite element models were created to evaluate their bending strength.
From the results of femoral locking screws, the screws with larger inner diameter and root radius have higher yielding load and fatigue life. Titanium femoral locking screw could significantly increase its fatigue strength. The analytical results of femoral locking screw models were closely related to those of biomechanical tests with high correlation coefficient. From the results of interlocking nails, the nails with larger outer diameter and smaller nail hole have lower maximal tensile stress.
The results of this study could help surgeons in selecting suitable devices for their patients and assist design engineers in developing new orthopaedic implants.

中文摘要 英文摘要 誌 謝 目 錄 符號索引 圖表索引 第一章 緒論 1.1 研究背景、動機與目的 1.2 股骨鎖定螺絲與鎖定內釘之生物力學概論 1.2.1股骨之解剖學構造 1.2.2股骨鎖定螺絲與鎖定內釘之簡介 1.3 文獻回顧 1.4 本文架構 第二章 鎖定螺絲之生物力學分析 2.1 鎖定螺絲之生物力學分析簡介 2.1.1 鎖定螺絲之生物力學分析影響因素 2.1.2 鎖定螺絲之生物力學測試條件 2.2 鎖定螺絲之彎曲強度測試 2.2.1 螺絲實體模型之幾何尺寸 2.2.2 螺絲試件之準備 2.2.3 鎖定螺絲之降伏負載測試 2.2.4 鎖定螺絲之疲勞強度測試 2.3 有限元素法簡介 2.3.1 前處理 2.3.2 求解階段 2.3.3 後處理 2.4 鎖定螺絲之有限元素分析 2.4.1 建立螺絲外型 2.4.2 網格化分割 2.4.3 接觸分析 2.4.4 模型之邊界條件與負載 2.4.5 求解 2.4.6 後處理 第三章 鎖定內釘之生物力學分析 3.1 鎖定內釘之生物力學分析簡介 3.1.1鎖定螺絲之生物力學分析影響因素 3.2 鎖定內釘之有限元素分析 3.2.1 建立內釘模型 3.2.2 網格化分析 3.2.3 接觸分析 3.2.4 求解 3.2.5 後處理 第四章 生物力學分析結果 4.1 鎖定螺絲之生物力學分析結果 4.1.1 鎖定螺絲之降伏負載測試結果 4.1.2 鎖定螺絲之疲勞強度測試結果 4.1.3 鎖定螺絲之有限元素分析結果 4.2 鎖定內釘之生物力學分析結果 第五章 綜合討論 5.1 股骨螺絲之生物力學分析討論 5.2 鎖定內釘之生物力學分析討論 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考文獻 附錄一 作者簡介

[1]林晉, 鎖定是骨髓內釘之基礎科學與臨床應用. 2004: 合記圖書出版社.
[2]Alho A, Ekeland A, Stromsoe K, Folleras G, Thoresen BO. Locked intramedullary nailing for displaced tibial shaft fractures. J Bone Joint Surg 1990;72B:805-9.
[3]Whittle AP, Wester W, Russell TA. Fatigue failure in small diameter tibial nails. Clin Orthop 1995;315:119-28.
[4]Brumback RJ. The rationales of interlocking nailing of the femur, tibia, and humerus: An overview. Clin Orthop 1996;324:292-320.
[5]Greitbauer M, Heinz T, Gaebler C, Stoik W, Vecsei V. Unreamed nailing of tibial fractures with the solid tibial nail. Clin Orthop 1998;350:105-14.
[6]Zand MS, Goldstein SA, Matthews LS. Fatigue failure of cortical bone screws. J Biomechanics 1983;165:305-11.
[7]Goel VK, Winterbottom JM, Weinstein JN. A Method For The Fatigue Testing of Pedicle Screw Fixation Devices. J Biomechanics 1994;2711:1383-8.
[8]Gaebler C, Stanzl-Tschegg S, Heinze G, Holper B, Milne T, Berger G, Vecsei V. Fatigue Strength of Locking Screws and Prototypes Used in Small-Diameter Tibial Nails: A Biomechanical Study. J Trauma 1999;472:379-84.
[9]Rouleau JP, Blasier RB, Tsai E, Goldstein SA. Cannulated Hip Screws: A Study of Fixation Integrity, Cut-out Resistance, and High-Cycle Bending Fatigue Performance. J Orthop Trauma 1994;84:293-9.
[10]Yamagata M, Kitahara H, Minami S, Takahashi K, Isobe K, Moriya H, Tamaki T. Mechanical Stability of the Pedicle Screw Fixation Systems for the Lumbar Spine. Spine 1992;173S:S51-S4.
[11]Lin J, Lin SJ, Chiang H, Hou SM. Bending strength and holding power of tibial locking screws. Clin Orthop 2001;385:199-206.
[12]Ferrara, L.A., Secor, J.L., Jin, B.H., Wakefield, A., Inceoglu, S. and Benzel, E.C., "A Biomechanical Comparison of Facet Screw Fixation and Pedicle Screw Fixation: Effects of Short-Term and Long-Term Repetitive Cycling," Spine, Vol.28, No.12, pp.1226-1234(2003).
[13]Evans, M., Spencer, M., Wang, Q., White, S.H. and Cunningham, J.L., "Design and Testing of External Fixator Bone Screws," J Biomed Eng, Vol.12, pp.457-462(1990).
[14]McLain R.F., T.O. McKinley, S.A. Yerby, T.S. Smith, and N. Sarigul-Klijn, "The effect of bone quality on pedicle screw loading in axial instability. A synthetic model". Spine, 1997. 22(13): p. 1454-60.
[15]Yerby, S.A., Ehteshami, J.R. and McLain, R.F., "Loading of Pedicle Screws within the Vertebra," J Biomech, Vol.30, pp. 951-954(1997).
[16]Pienkowski D, Stephens GC, Doers TM, Hamilton DM. Multicycle Mechanical Performance of Titanium and Stainless Steel Transpedicular Spine Implants. Spine 1998;237:782-8.
[17]Stambough JL, Genaidy AM, Huston RL, Serhan H, Sabri EH. Biomechanical assessment of titanium and stainless steel posterior spinal constructs: effects of absolute/relative loading and frequency on fatigue life and determonation of failure modes. J Spinal Disord Tech 1997;106:473-81.
[18]Serhan H, Slivka M, Albert T, Kwak SD. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern? Spine J 2004;4:379-87.
[19]Chen PQ, Lin SJ, Wu SS, So H. Mechanical performance of the new posterior spinal implant: effect of materials, connecting plate, and pedicle screw design. Spine 2003;289:881-6.
[20]Ashman R, Galpin R, Corin J. Biomechanical analysis of pedicle screw instrumentation ystems in a corpectomy model. Spine 1989;14:1398–405.
[21]Ebraheim NA, Savolain ER, Stitgen SH. Magnetic resonance imaging after edicular screw fixation of the spine. Clin Orthop 1992;279:133–7.
[22]Dick JC, Bourgeault CA. Notch sensitivity of titanium alloy, commercially pure titanium, and stainless steel spinal implants. Spine 2001;2615:1668-72.
[23]Beaupre GS, Schneider E, Perren S. Stress analysis of a partially slotted intramedullary nail. J Orthop Res 1984;2:369-76.
[24]Kempf I, Grosse A, Beck G. Closed locked intramedullary nailing: its application to comminuted fractures of the femur. J Bone Joint Surg 1985;67A:709-20.
[25]Sim E, Freimuller W, Reiter TJ. Finite element analysis of the stress distributions in the proximal end of the femur after stabilization of a pertrochanteric model fracture: a comparison of two implants. Injury 1995;26:445-9.
[26]Wang CJ, Yettram AL, Yao MS, Procter P. Finite element analysis of a Gamma nail within a fractured femur. Med Eng Phys 1998;20:677-83.
[27]Zimmerman KW, Klasen HJ. Mechanical failure of intramedullary nails after fracture union. J Bone Joint Surg 1983;65B(3):274-5.
[28]Hansson S. and M. Werke, "The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study". Journal of Biomechanics, 2003. 36: p. 1247-58.
[29]Hou SM, Hsu CC, Wang JL, Chao CK, Lin J. Mechanical Tests and Finite Element Models for Bone Holding Power of Tibial Locking Screws. Clin Biomech 2004;19:738-45.
[30]Hsu CC, Chao CK, Wang JL, Hou SM, Tsai YT, Lin J. Increase of Pullout Strength of Spinal Pedicle Screws with Conical Core: Biomechanical Tests and Finite Element Analysis. J Orthop Res 2005;(In press)
[31]Chen SI, Lin RM, Chang CH. Biomechanical investigation of pedicle screw-vertebrae complex: a finite element approach using bonded and contact interface conditions. Med Eng Phys 2003;25:275-82.
[32]Hearn, T.C., Schatzker, J. and Wolfson, N., "Extraction Strength of Cannulated Cancellous Bone Screws," J Orthop Trauma, Vol.7, No.2, pp.138-141(1993).
[33]Youssef J.A., T.O. McKinley, S.A. Yerby, and R.F. McLain, "Char-acteristics of Pedicle Screw Loading: Effect of Sagittal Insertion Angle on Intrapedicular Bending Moments". Spine, 1999. 24(11): p. 1077.
[34]Long M, Rack HJ. Titanium alloys in total joint replacement-a materials science perspective. Biomaterials 1998;19:1621–39.
[35]Arendt ,S.A.,Bailey,S.J., "A1.TEST METHOD FOR STATIC FOUR-POINT BEND TEST METHOD(F1264-03), "ANNUAL BOOKS OF ASTM STANDARDS(2005) ".
[36]徐慶琪,「骨絲之結構設計與生物力學分析」,國立台灣科技大學機械工程系研究所碩士論文,民國九十四年。
[37]Netter, F.H., "Atlas of Human Anatomy, 2nd ed.," ICON Learning Systems, (2002).

QR CODE