簡易檢索 / 詳目顯示

研究生: 楊銘安
Ming-An Yang
論文名稱: 不同脊椎後方骨融合術於腰椎椎間盤退化問題之治療策略與生醫力學分析
Biomechanical Analyses and Surgical Strategies for Lumbar Degenerative Disc Diseases Treated with Different Posterior Lumbar Interbody Fusion Techniques
指導教授: 趙振綱
Ching-Kong Chao
徐慶琪
Ching-Chi Hsu
口試委員: 張定國
Ding-Kwo Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 136
中文關鍵詞: 腰椎有限元素分析法退化性椎間盤疾病Dynesys動態固定系統混合型後方固定系統鄰近節段退化
外文關鍵詞: Lumbar spine, Finite element analysis, Degenerative disc, Dynesys, Hybrid stabilization systems, Adjacent segment degeneration
相關次數: 點閱:309下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 脊椎融合術一直以來是治療椎間盤退化的主要方法,但是許多臨床文獻指出,在術後觀察期發現,患者因為手術節段的活動度降低,使得鄰近節段發生補償現象進而加速鄰近節段退化,近年來,一些學者提出將剛性固定和動態固定結合成混合型固定,希望達到原有的穩定度還能減少鄰近節段退化的問題。然而過去的文獻並未完整說明何種混合型動態固定為較佳的選擇,因此本研究目的為利用有限元素分析法評估混合型動態固定系統的生物力學性能。
    本研究選用T10-S1的胸腰椎三維有限元素模型,將L3-L4或L4-L5退化椎間盤移除並植入椎籠,在前彎、後彎、側彎和扭轉四種運動狀態下,求得各節椎間旋轉角度、後方固定器應力及鄰近節椎間盤應力等生物力學特性,探討不同種類的排列方法下,選擇最佳的雙節後方混合型固定及三節後方混合型固定作為治療方式。
    分析結果顯示,退化節段和鄰近節段使用動態固定能夠有較接近完整脊椎的椎間旋轉角度,其中在雙節混合型後方固定中,退化節段搭配上端節段固定有較好的結果;在雙節混合型後方固定器的應力比較中發現,退化節段和上端節段皆為動態固定有最小的應力值,在三節混合型後方固定的比較中得知,退化節段為剛性固定搭配鄰近節段皆為動態固定能夠有效減緩後方固定器的損壞率;在鄰近節椎間盤應力的結果中發現,其較佳的固定方式和椎間旋轉角度結果有相同趨勢,因此皆使用動態固定能夠有效降低鄰近節承受的負載,本研究結果能夠提供臨床醫生在術前分析上做為選擇混合型後方固定器的參考。


    Fusion has been the main treatment for degenerative disc disease (DDD). However, many clinical studies have showed that adjacent segment degeneration was observed after fusion surgery. To solve these problems, dynamic stabilizations were used to treat disc degeneration. In recent years, some researchers proposed to combine rigid and dynamic stabilization in the treatment of degenerative disc disease. Hybrid dynamic stabilization is designed to achieve the original stability and reduce adjacent segment degeneration. However, previous research did not specify what kind of hybrid dynamic stabilization is a better choice. The purpose of my study was to investigate which hybrid dynamic stabilization is the best combination to treat DDD.
    A three-dimensional finite element model of the T10-S1 lumbar spine was used to evaluate biomechanics of various device including double hybrid stabilization and triple hybrid stabilization in comparison with intact spine. I remove degenerative disc at L3-L4 level or L4-L5 level and insert into the cage. The loading cases of flexion, extension, lateral bending and axial rotation were simulated. Intersegmental rotation, the von Mises stress of adjacent disc and the von Mises stress of posterior device were calculated and discussed at the index level and at the adjacent levels.
    The results to double hybrid dynamic stabilization showed that the degenerative segments and the upper adjacent segments using dynamic stabilization can have a greater inter-segmental rotation. Posterior device with Dynesys has the lowest stress at the index level and the upper adjacent level. The von Mises stress of adjacent intervertebral disc has same trend to the inter-segmental rotation.
    The results to triple hybrid dynamic stabilization showed that the degenerative segments and the adjacent segments using dynamic stabilization can have a greater inter-segmental rotation. Posterior device using rigid stabilization at the index level and using Dynesys stabilization at the adjacent level has the lowest stress. The adjacent intervertebral disc stress is closed to the intact spine with Dynesys at the index and adjacent levels.
    Using the dynamic stabilization on double and triple hybrid posterior device can reduce the load on the adjacent segments. Finally, my research could help surgeons to understand the biomechanical performances of hybrid posterior stabilization.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 XIII 表目錄 XVI 第1章 緒論 1 1.1 研究動機 1 1.2 脊椎結構 1 1.2.1 椎體之生物力學特性 3 1.2.2椎間盤之生物力學特性 3 1.2.3椎體韌帶之生物力學特性 4 1.3 椎間盤退化疾病 5 1.3.1 椎間盤突出 6 1.3.2 椎管狹窄 6 1.3.3 椎間滑脫 7 1.4 腰椎植入物介紹 8 1.4.1 融合系統 8 1.4.2 動態固定系統 10 1.4.2.1 棘突間撐開器 10 1.4.2.2 椎弓根骨螺絲系統 11 1.5 文獻回顧 14 1.5.1 後方腰椎融合術之併發症 14 1.5.2 鄰近節退化之問題 15 1.5.3 動態固定系統發展及臨床結果 16 1.5.4 動態固定系統之有限元素分析回顧 17 1.5.5 混合型動態固定系統發展及臨床結果 20 1.6 研究目的 22 1.7 本文架構 23 第2章 材料與方法 24 2.1 有限元素法介紹 25 2.2 模型結構建立 26 2.2.1 完整胸腰椎模型 26 2.2.2 植入物模型 26 2.3 有限元素分析 36 2.3.1 完整胸腰椎有限元素模型 36 2.3.2 材料參數設定 37 2.3.3 介面接觸設定 40 2.3.4 網格設定 42 2.3.5 邊界條件及負載條件設定 43 2.3.6 收斂性分析 45 2.4 脊椎元件之生物力學分析 46 2.4.1 整體角度轉換位移 46 2.4.2 椎間旋轉角度計算 48 2.4.3 後方固定器之應力 50 2.4.4.鄰近節椎間盤之應力 50 第3章 結果 51 3.1 收斂性分析 51 3.2 完整脊椎模型驗證 57 3.3 L3-L4節退化使用雙節固定之生物力學分析 59 3.3.1 各椎節間旋轉角度 59 3.3.2 後方固定器之應力 70 3.3.3鄰近節椎間盤之應力 72 3.4 L3-L4節退化使用三節固定之生物力學分析 77 3.4.1 各椎節間旋轉角度 77 3.4.2 後方固定器之應力 88 3.4.3 鄰近節椎間盤之應力 90 3.5 L4-L5節退化使用雙節固定之生物力學分析 93 3.5.1 各椎節間旋轉角度 93 3.5.2 後方固定器之應力 104 3.5.3 鄰近節椎間盤之應力 106 3.6 L4-L5節退化使用三節固定之生物力學分析 110 3.6.1 各椎節間旋轉角度 110 3.6.2 後方固定器之應力 121 3.6.3 鄰近節椎間盤之應力 123 第4章 討論 125 4.1 各節椎間旋轉角度 125 4.2 後方固定器之von Mises應力 127 4.3 鄰近節椎間盤之von Mises應力 129 4.4 研究限制 131 第5章 結論與未來展望 132 5.1 結論 132 5.2 未來展望 133 參考文獻 134

    [1]Oxford University Press
    http://www.backpain-guide.com/Chapter_Fig_folders/Ch05_Anatomy_Folder/Ch5Anatomy.html
    [2]MAYFIELD Brain&Spine
    http://www.mayfieldclinic.com/PE-AnatSpine.htm
    [3]MedlinePlus
    https://www.nlm.nih.gov/medlineplus/ency/imagepages/19469.htm
    [4]Spine Institute
    http://www.coloradospineinstitute.com/subject.php?pn=anatomy-ligaments-17
    [5]ISpineCare
    http://www.ispinecare.com/spine_disease/index.html
    [6]M. A. Adams, P. J. Roughley, "What is Intervertebral Disc Degeneration, and What Causes It? "Spine. 31 , 2151-2161 (2006).
    [7]Spine-health
    http://www.spine-health.com/conditions/degenerative-disc-disease/what-degenerative-disc-disease
    [8]AHMC Healthcare
    http://www.anaheimregionalmc.com/Clinical-Services/Spinal-Surgeries/Low-Back-Pain.aspx
    [9]H. Serhan, D. Mhatre, H. Defossez, and C. M. Bono, "Motion-preserving technologies for degenerative lumbar spine: The past, present, and future horizons," SAS Journal. 5,75-89 (2011).
    [10]V. Palepu, M. Kodigudla, and V. K. Goel, "Biomechanics of disc degeneration," Adv Orthop. (2012).
    [11]C. Y. Barrey, R. K. Ponnappan, J. Song, and A. R. Vaccaro, "Pedicle screw-based dynamic stabilization devices for the lumbar spine," ArgoSpine News & Journal. 21,78-84 (2009).
    [12]C. A. Dickman, "Internal fixation and fusion of the lumbar spine using threaded interbody cages, "Barrow Quarterly. 13, (1997).
    [13]manojkrishna
    http://www.spinalsurgeon.com/treatments/surgical-treatments/plif/
    [14]H. Serhan, D. Mhatre, H. Defossez, and C. M. Bono, "Motion-preserving technologies for degenerative lumbar spine: The past, present, and future horizons," SAS Journal.5, 75-89 (2011).
    [15]X. Courville, J. Torretti, and D. K. Sengupta, "Dynamic Stabilization: Principles and Current Clinical Practice," Seminars in Spine Surgery. 20 ,146-153 (2008).
    [16]S. Agazzi, A. Reverdin, and D. May, "Posterior lumbar interbody fusion with cages: an independent review of 71 cases," Journal of Neurosurgery: Spine. 91,186-192 (1999).
    [17]P. Enker, A. D. Steffee, "Interbody Fusion and Instrumentation, "Clinical Orthopaedics and Related Research. 300,90-101 (1994).
    [18]S. Madan, N. R. Boeree, "Outcome of posterior lumbar interbody fusion versus posterolateral fusion for spondylolytic spondylolisthesis," Spine. 27, 1536-1542 (2002).
    [19]P. Park, H. J. Garton, V.C. Gala, J. T. Hoff, and J. E. McGillicuddy, "Adjacent Segment Disease after Lumbar or Lumbosacral Fusion: Review of the Literature," Spine. 29,1938-1944 (2004).
    [20]G. Ghiselli, J. C. Wang, N. N. Bhatia, W. K. Hsu, and E. G. Dawson, "Adjacent Segment Degeneration in the Lumbar,"Spine,86, (2004).
    [21]M. S. Wilsa, C. Malveaux and A.D. Sharan, "Adjacent Segment Disease After Lumbar Spinal Fusion: A Systematic Review of the Current Literature," Seminars in Spine Surgery. 23,266-274 (2011).
    [22]A. Marsol-Puig, R. Huguet-Comelles, J. Escala-Arnau, and J. Giné-Gomà, "Incidence and risk factors of adjacent disc degeneration after lumbar fusion," Revista Española de Cirugía Ortopédica y Traumatología (English Edition). 55,170-174 (2011).
    [23]T. Tsujia, K. Watanabeb, and N. Hosoganec, " Risk factors of radiological adjacent disc degeneration with lumbar interbody fusion for degenerative spondylolisthesis," Journal of Orthopaedic Science.21, 133-137 (2016).
    [24]T. M. Stoll, G. Dubois, and O. Schwarzenbach, "The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system," Eur Spine J. 11 , 170-178 (2002).
    [25]A. Kumar, J. Beastall, J. Hughes, and E. J. Karadimas, "Disc changes in the bridged and adjacent segments after Dynesys dynamic stabilization system after two years, "Spine. 33 ,(2008).
    [26]M. Bothmann, E. Kast, G. J. Boldt, and J. Oberle, "Dynesys fixation for lumbar spine degeneration," Neurosurg Rev. 31, 189-196 (2008).
    [27]M. Putzier, E. Hoff, and S. Tohtz,"Dynamic stabilization adjacent to single-level fusion: part II. No clinical benefit for asymptomatic, initially degenerated adjacent segments after 6 years follow-up,"Eur Spine J. 19 , 2181-2189 (2010).
    [28]Z. H. Li, F. N. Li, S. Z. Yu, "Two-year follow-up results of the Isobar TTL Semi-Rigid Rod System for the treatment of lumbar degenerative disease," Journal of Clinical Neuroscience. 20, 394-399 (2013).
    [29]A. Rohlmann, N. K. Burra, T. Zander, and G. Bergmann, "Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis," Eur Spine J. 16, 1223-1231 (2007).
    [30]Q. H. Zhang, Y.. L. Zhou, "Evaluation of load transfer characteristics of a dynamic stabilization device on disc loading under compression," Medical Engineering & Physics. 31, 533-538 (2009).
    [31]T. A. Jahng, Y. E. Kim, and K. Y. Moon, "Comparison of the biomechanical effect of pedicle-based dynamic stabilization: a study using finite element analysis," Spine J, 13, 85-94 (2013).
    [32]T. Zander , A. Rohlmann, N. K. Burra, G. Bergmann, "Effect of a posterior dynamic implant adjacent to a rigid spinal fixator, " Clinical Biomechanics. 21 , 767-774 (2006).
    [33]B. C. Cheng, J. Gordon, J. Cheng, W. C. Welch, "Immediate biomechanical effects of lumbar posterior dynamic stabilization above a circumferential fusion," Spine. 32 , 2551-2557 (2007).
    [34]W. R. Hudson, J. E. Gee, J. B. Billys, and A. E. Castellvi, "Hybrid dynamic stabilization with posterior spinal fusion in the lumbar spine," SAS Journal. 36-43(2011).
    [35]W. R. Sears, I. G. Sergides, N. Kazemi, "Incidence and prevalence of surgery at segments adjacent to a previous posterior lumbar arthrodesis," Spine Journal, 11, 11-20 (2011).
    [36]A. A. White, M. Panjabi, Clinical Biomechanics of the Spine, 2 , Philadelphia: Lippincott , (1990).

    QR CODE