簡易檢索 / 詳目顯示

研究生: 蘇信源
Shinyen Jason Su
論文名稱: 以合併螺絲孔改善鈦合金鎖固式骨板疲勞強度之研究
Merging holes can affect the fatigue strength of titanium locking plate
指導教授: 趙振綱
Ching-Kong Chao
林晉
Jinn Lin
口試委員: 徐慶琪
Ching-Chi Hsu
林晉
Jinn LIN
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 37
中文關鍵詞: 鈦合金鎖定式骨板機械測試有限元素分析骨科生物力學生物力學測試
外文關鍵詞: titanium alloy locking bone plate, mechanical test, finite element analysis, orthopedic biomechanics, biomechanical test
相關次數: 點閱:199下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在骨科手術中,骨板廣泛地被用來治療各種部位的骨折,而新型的鎖定式骨板(Locking plate)其螺絲與骨板可用螺紋系統結合,因此比傳統的動態加壓骨板(dynamic compression plate)要能提供更佳的穩定度。然而螺紋含量之幾何所造成骨板應力下降之趨勢,進而降低元件之疲勞壽命,而使其使用壽命增加。因此本研究目的為探討不同螺紋合併孔洞設計與偏心孔洞設計對鎖定式骨板機械性能優劣性之影響。

    通常機械斷裂有兩種情況:植入物鬆脫和植入物斷裂,當螺絲鬆開到與骨板分離時,此現象為植入物鬆脫,而病人在經長時間的走路或過度使用後導致骨板發生破壞的情形,則稱為植入物斷裂,通常手術技術不正確或植入物設計不當,皆可能會發生機械斷裂。不正確的手術技術包括錯誤選擇板,骨板板太短,螺釘數量不足,骨板的螺絲密度或工作長度不足,螺絲鎖歪,較大的骨折間隙以及過早進行承重活動。植入物設計不良包括材料選擇錯誤,幾何形狀不合適或尺寸過小的鋼板和螺釘。

    在本文中,分為生物力學測試以及有限元素分析兩部分,在生物力學測試方面,總共對五種骨板進行降伏測試與疲勞測試,而在實驗後得到位移、負載之關係而計算出其降伏強度與疲勞壽命;而在有限元素分析方面,利用 SolidWorks 建立三維骨板模型並匯入 ANSYS 來進行模擬,其負荷情形與邊界條件和機械測試相同,並得到有限元素分析數值之最大張應力與位移,並將生物力學測試與有限元素分析做一相關性的比較。有限元素分析結果顯示,合併孔洞之螺紋孔洞移除1/3螺紋後之應力下降最多。此生物力學研究結果可以提供給相關工程師做為改良鎖定式骨板之設計参考。


    In orthopedic surgery, bone plates are widely used to treat fractures in various parts, and the new type of locking plate (Locking plate), the screw and bone plate can be combined with a thread system, so it is better than the traditional dynamic compression plate (dynamic compression plate). The compression plate) should be able to provide better stability. However, the geometry of the thread content causes the stress of the bone plate to decrease, thereby reducing the fatigue life of the component and increasing its service life. Therefore, the purpose of this study is to investigate the influence of different thread combined hole design and eccentric hole design on the mechanical properties of locking bone plates.

    Generally, there are two cases of mechanical fracture: implant loosening and implant fracture. When the screw is loosened and separated from the bone plate, this phenomenon is the implant loosening, and the patient is walking for a long time or overuse The subsequent damage to the bone plate is called implant fracture. Usually, if the surgical technique is incorrect or the implant is not designed properly, mechanical fracture may occur. Incorrect surgical techniques include incorrect selection of plates, too short bone plates, insufficient number of screws, insufficient screw density or working length of the bone plates, crooked screw locks, large fracture gaps, and premature weight bearing activities. Poor implant design includes incorrect material selection, improper geometry or undersized steel plates and screws.

    In this article, it is divided into two parts: biomechanical test and finite element analysis. In terms of biomechanical test, a total of five types of bone plates are subjected to yield test and fatigue test. After the experiment, the relationship between displacement and load is obtained and the yield is calculated Strength and fatigue life; and in terms of finite element analysis, using SolidWorks to build a three-dimensional bone plate model and importing it into ANSYS for simulation, the load situation is the same as the boundary conditions and mechanical tests, and the maximum tensile stress and displacement of the finite element analysis value are obtained , And make a correlation comparison between biomechanical testing and finite element analysis. The results of finite element analysis showed that the stress drop of the threaded hole of the combined hole was the most after removing 1/3 of the thread. The results of this biomechanical study can be provided to relevant engineers as a reference for the design of improved locking bone plates.

    目錄 中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄索引 VI 表目錄索引 IX 第一章 緒論 9 1.1 研究動機與目的 9 1.2 文獻回顧 10 第二章 研究方法 12 2.1 研究流程 12 2.2 合併孔洞距之有限元素法分析 12 2.2.1 網格化與材料設定 12 2.2.2 邊界條件與求解 12 2.2.3 後處理與收斂性分析12 2.3 骨板螺孔數目之有限元素分析 12 2.3.1 建立模型及其幾何參數 13 2.3.2 網格化與材料設定 13 2.3.3 邊界條件與求解 14 2.3.4 後處理 15 2.4 機械測試 16 2.4.1 鎖定骨板實體模型之測試類別 16 2.4.2 骨板測試夾治具之準備 17 2.4.3 骨板之降伏測試 18 2.4.4 骨板之疲勞測試 18 2.4.5螺絲穩定性測試 19 2.5 破壞分析 20 2.6 統計分析 20 第三章 結果 21 3.1 合併孔洞距之有限元素法分析結果 21 3.2 骨板螺孔數目之有限元素分析結果 22 3.3 骨板疲勞測試之結果 23 3.4 骨板疲勞測試之循環剛性係數 32 3.5 骨釘彎曲測試之結果 54 第四章 討論 34 4.1 疲勞測試結果討論 34 4.2 研究限制 34 第五章 結論與未來展望 36 5.1 結論 36 5.2 未來展望 37

    1. Egol KA, Kubiak EN, Fulkerson E, Kummer FJ, Koval KJ. Biomechanics of locked plates and screws. J Orthop Trauma 2004;18:488-93.
    2. Walsh S, Reindl R, Harvey E, Berry G, Beckman L, Steffen T. Biomechanical comparison of a unique locking plate versus a standard plate for internal fixation of proximal humerus fractures in a cadaveric model. Clin Biomech (Bristol, Avon) 2006;21:1027-31.
    3. Tolat AR, Amis A, Crofton S, Sinha J. Failure of humeral fracture fixation plate in a young patient using the Philos system: case report. J Shoulder Elbow Surg 2006;15:e44-7.
    4. Vallier HA, Hennessey TA, Sontich JK, Patterson BM. Failure of LCP condylar plate fixation in the distal part of the femur. JBJS Case Connector 2006:846-53.
    5. Yukata K, Doi K, Hattori Y, Sakamoto S. Early breakage of a titanium volar locking plate for fixation of a distal radius fracture: case report. J Hand Surg Am 2009;34:907-9.
    6. Button G, Wolinsky P, Hak D. Failure of less invasive stabilization system plates in the distal femur: a report of four cases. J Orthop Trauma 2004;18:565-70.
    7. Christensen FB, Dalstra M, Sejling F, Overgaard S, Bünger C. Titanium-alloy enhances bone-pedicle screw fixation: mechanical and histomorphometrical results of titanium-alloy versus stainless steel. Eur Spine J 2000;9:97-103.
    8. Kääb MJ, Frenk A, Schmeling A, Schaser K, Schuetz M, Haas NP. Locked internal fixator: Sensitivity of screw/plate stability to the correct insertion angle of the screw. J Orthop Trauma 2004;18:483-7.
    9. Sommer C, Babst R, Müller M, Hanson B. Locking compression plate loosening and plate breakage: a report of four cases. J Orthop Trauma 2004;18:571-7.
    10. Scuderi GJ, Greenberg SS, Cohen DS, Latta LL, Eismont FJ. A biomechanical evaluation of magnetic resonance imaging-compatible wire in cervical spine fixation. Spine 1993;18:1991-4.
    11. Stambough JL, Genaidy AM, Huston RL, Serhan H, El-khatib F, Sabri EH. Biomechanical assessment of titanium and stainless steel posterior spinal constructs: effects of absolute/relative loading and frequency on fatigue life and determination of failure modes. Clin Spine Surg 1997;10:473-81.
    12. Pienkowski D, Stephens GC, Doers TM, Hamilton DM. Multicycle mechanical performance of titanium and stainless steel transpedicular spine implants. Spine 1998;23:782-8.
    13. Gaebler C, Stanzl-Tschegg S, Heinze G, Holper B, Milne T, Berger G, Vecsei V. Fatigue strength of locking screws and prototypes used in small-diameter tibial nails: a biomechanical study. J Trauma Acute Care Surg 1999;47:379-84.
    14. Haritos GK, Nicholas T, Lanning DB. Notch size effects in HCF behavior of Ti–6Al–4V. Int J Fatigue 1999;21:643-52.
    15. Dick JC, Bourgeault CA. Notch sensitivity of titanium alloy, commercially pure titanium, and stainless steel spinal implants. Spine 2001;26:1668-72.
    16. Chen P-Q, Lin S-J, Wu S-S, So H. Mechanical performance of the new posterior spinal implant: effect of materials, connecting plate, and pedicle screw design. Spine 2003;28:881-6.
    17. Hsu CC, Yongyut A, Chao CK, Lin J. Notch sensitivity of titanium causing contradictory effects on locked nails and screws. Med Eng Phys 2010;32:454-60.
    18. Tseng WJ, Chao CK, Wang CC, Lin J. Notch sensitivity jeopardizes titanium locking plate fatigue strength. Injury 2016;47:2726-32.
    19. Lin CH, Chao CK, Ho YJ, Lin J. Modification of the screw hole structures to improve the fatigue strength of locking plates. Clin Biomech (Bristol, Avon) 2018;54:71-7.
    20. Hung LW, Chao CK, Huang JR, Lin J. Screw head plugs increase the fatigue strength of stainless steel, but not of titanium, locking plates. Bone Joint Res 2018;7:629-35.

    無法下載圖示 全文公開日期 2025/07/16 (校內網路)
    全文公開日期 2025/07/16 (校外網路)
    全文公開日期 2025/07/16 (國家圖書館:臺灣博碩士論文系統)
    QR CODE