簡易檢索 / 詳目顯示

研究生: 張可旻
Ke-Min Jhang
論文名稱: 多孔鋁合金薄板於張伸製程之失效評估
Failure Assessments of Porous Aluminum Sheets under Stretching Procedures
指導教授: 劉見賢
Chien-Hsien Liu
廖國基
Kuo-Chi Liao
口試委員: 呂森林
Sen-Lin Lu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 44
中文關鍵詞: 多孔金屬材料巨觀平面異向性降伏準則有限元素分析
外文關鍵詞: porous sheet metal, macroscopic planar anisotropic yield criterion, finite element analysis
相關次數: 點閱:248下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用修正型Gurson降伏準則,描述具備平面異向性之多孔金屬薄板材料行為,基材塑性行為係遵循YLD2000-2D降伏函式。同時導入受應變誘發成核(strain-induced nucleation)模型,受應力控制成核(stress-controlled nucleation)模型,孔洞成長模型,與孔洞匯合(coalescence)模型,藉以描述孔洞於材料承受塑性負載過程之發展。本研究應用有限元素分析軟體結合材料使用者副程式,檢視多孔鋁合金屬薄板於半圓球沖頭張伸(hemispherical punch stretching)成形負載條件下,薄板發生破裂之時機與位置。模擬結果與相對應實驗及相關文獻結論進行比較,獲致良好之吻合度。


    A finite element analysis is carried out to assess damage evolution and crack occurrence of aluminum sheets under the hemispherical stretching procedures in the present study. A modified Gurson yield criterion is adopted to account for macroscopic behaviors of the sheet metal with porosity. Plastic responses of the matrix surrounding voids are assumed to follow the planar anisotropic yield function YLD2000-2D. Various void evolution mechanisms including nucleation, growth, and coalescence are implemented into the numerical simulations. The ultimate void volume fraction is set to characterize the failure of elements without load-carrying capacity. Calculated results show that the void growth following the Cocks and Ashby model dominates the corresponding damage accumulation. Rupture locations of the sheet based on the simulations are in fair agreement with those based on the experimental measurements reported in the literature.

    摘要....................................................I Abstract...............................................II 誌謝..................................................III 目錄...................................................IV 圖目錄.................................................VI 表目錄................................................VII 符號表...............................................VIII 第一章 緒論...........................................1 1.1 前言................................................1 1.2 文獻回顧............................................1 1.3 研究目的............................................4 1.4 論文架構............................................5 第二章 多孔金屬材料組成律...............................6 2.1 巨觀降伏準則........................................6 2.2 基材降伏函式........................................7 2.3 孔洞體積比發展模型..................................9 2.4 增量形式之應力狀態與應變狀態關係....................11 第三章 有限元素分析.....................................23 3.1 材料參數與邊界條件設定..............................23 3.2 模擬結果與討論......................................26 第四章 總結與未來展望...................................34 參考文獻................................................35 附錄一 四階Runge-Kutta演算法............................39 附錄二 鋁合金AA5182-O之真實應力-塑性應變曲線資料點......41 附錄三 求解異向性參數及其平值...........................42

    [1] A.L. Gurson, “Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media,” J. Eng. Mater. Tech., vol. 99, pp. 2-15, 1977.

    [2] C.-C. Chu, A. Needleman, “Void Nucleation Effects in Biaxially Stretched Sheet,” J. Eng. Mater. Techol., vol. 102, pp. 249-256, 1980.

    [3] V. Tvergaard, “Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions,” Int. J. Fract., vol. 17, pp. 389-407, 1981.

    [4] M. Saje, J. Pan, A. Needleman, “Void Nucleation Effects on Shear Localization in Porous Plastic Solids,” Int. J. Fract., vol. 19, pp. 163-182, 1982.

    [5] V. Tvergaard, A. Needleman, “Analysis of The Cup-Cone Fracture in A Round Tensile Bar,” Acta. Metal., vol. 32, pp. 157-169, 1984.

    [6] M. Brunet, F. Sabourin, S. Mguil Touchal, “The Prediction of Necking and Failure in 3D Sheet Forming Analysis Using Damage Variable,” J. De Physique IV, vol. 6, pp. 473-474, 1996.

    [7] Z.-Y. Chen, X.-H. Dong, “The GTN Damage Model Based in Hill’48 Anisotropic Yields Criterion and Its Application in Sheet Metal Forming,” Comp. Mater. Science, vol. 44, pp. 1013-1021, 2009.

    [8] K.-C. Liao, J. Pan, S.C. Tang, “Approximate Yield Criteria for Anisotropic Porous Ductile Sheet Metals,” Mech. Mater., vol. 26, pp. 213-216, 1997.

    [9] W.Y. Chien, J. Pan, S.C. Tang, “Modified Anisotropic Gurson Yield Criterion for Porous Ductile Sheet Metals,” J. Eng. Mater. Tech., vol. 123, pp. 409-416, 2001.

    [10] D.-A. Wang, J. Pan, S.-D. Liu, “An Anisotropic Gurson Yield Criterion for Porous Ductile Sheet Metals with Planar Anisotropy,” Int. J. Dam. Mech., vol. 13, pp. 7-33, 2004.

    [11] K.-C. Liao, “Applications of Planar Anisotropic Yield Criteria to Porous Sheet Metal Forming Simulations,” Eur. J. Mech. A. Solids, vol. 28, pp. 806-810, 2009.

    [12] J.W. Yoon, F. Barlat, R.E. Dick, “Sheet Metal Forming Simulation for Aluminum Alloy Sheets,” Sheet Metal Forming Simulation: Sing-Tang 65th Anniversary Volume, SAE Paper 2000-01-0774, Society of Automotive Engineer, Warrendale, PA, pp. 64-72, 2000.

    [13] J.G. Hu, T. Ishikawa, J.J. Jonas, “Finite Element Analysis of Damage Evolution and The Prediction of Limiting Draw Ratio in Textured Aluminum Sheets,” J. Mater. Process. Technol., vol. 103, pp. 374-382, 2000.

    [14] 劉得仁,金屬板材方杯拉伸裂紋成長之預測,碩士論文,淡江大學,2006。

    [15] J.P. Fan, C.Y. Tang, C.P. Tsui, L.C. Chan, T.C. Lee, “3D Finite Element Simulation of Deep Drawing with Damage Development” Int. J. Mach. Tools & Manu., vol. 46, pp. 1035-1044, 2006.

    [16] Z.Q. Yu, Z.Q. Lin, Y.X. Zhao, “Evaluation of Fracture Limit in Automotive Aluminum Alloy Sheet Forming,” Mate. Des., vol. 28, pp. 203-207, 2007.

    [17] F. Barlat, J. Lain, “Plasticity Behavior and Stretchability of Sheet Metals,” Int. J. Plast., vol. 51, pp. 51-66, 1989.

    [18] N. Abedrabbo, F. Pourboghrat, J. Carsley, “Forming of AA5182-O and AA5754-O at Elevated Temperatures Using Coupled Thermo-Mechanical Finite Element Models,” Int. J. Plasticity, vol. 23, pp. 841-875, 2007.

    [19] W.F. Hosford, “On The Crystallographic Basis of Yield Criteria,” Textures Microstruct, vol. 27, pp. 26-27, 1996.

    [20] F. Barlat, Y. Maeda, K. Chung, M. Yanagawa, J.C. Brem, Y. Hayashida, D.J. Lege, K. Matsui, S.J. Murtha, S. Hattori, R.C. Becker, S. Makosey, “Yield Function Development for Aluminum Alloy Sheets,” J. Mech. Phys. Solids, vol. 45, pp. 1727-1763, 1997.

    [21] F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.-H. Choi, E. Chu, “Plane Stress Yield Function for Aluminum Alloy Sheet—Part 1: Theory,” Int. J. Plasticity, vol. 19, pp. 1297-1319, 2003.

    [22] A.V. Hershey, “The Plasticity of An Isotropic Aggregate of Anisotropic Face Centered Cubic Crystals,” J. Appl. Mech. Trans., vol. 21, pp. 241-249, 1954.

    [23] W.F. Hosford, “A Generalized Isotropic Yield Criterion,” J. Appl. Mech., vol. 39, pp. 607-609, 1972.

    [24] A.L. Gurson, “Plastic Flow and Fracture Behavior of Ductile Materials Incorporating Void Nucleation, Growth and Interaction,” Ph.D. Dissertation, Brown University, 1975.

    [25] A.S. Argon, J. Im, “Separation of Second Phase Particles in Spheroidized 1045 Steel, Cu-0.6Pct Cr Alloy, and Maraging Steel in Plastic Straining,” Meta. Trans., vol. 6A, pp. 839-851, 1975.

    [26] A.C.F. Cocks, M.F. Ashby, “On Creep Fracture by Void Growth,” Prog. Mater. Science, vol. 27, pp. 189-244, 1982.

    [27] M.F. Ashby, D.R.H. Jones, Engineering Materials: An Introduction to Their Properties and Applications, Oxford, NY; 1980.

    [28] G.P. Tandon, G.J. Weng, “A Theory of Particle-Reinforced Plasticity,” J. Appl. Mech., vol. 55, pp. 126-135, 1988.

    [29] W.F. Chen, D.J. Han, Plasticity for Structural Engineers, Springer-Verlag, NY; 1988.

    [30] H.D. Hibbitt, B.I. Karlsson, E.P. Sorensen, ABAQUS User Manual, Version 6.8, USA; 2008.

    [31] W.F. Hosford, R.M. Caddell, Metal Forming─Mechanics and Metallurgy, Prentice-Hall, NJ; 1983.

    [32] J.G. Hu, J.J. Jonas, T. Ishikawa, “Effect of void Nucleation and Growth on Forming Limit Diagrams of Textured Aluminum Alloy Sheets,” Metals and Materials, vol. 4, pp. 973-977, 1998.

    無法下載圖示 全文公開日期 2015/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE