簡易檢索 / 詳目顯示

研究生: 蔡易霖
Yi-Lin Tsai
論文名稱: 基於藍牙穿戴式裝置的啞鈴動作計次和辨識系統
A Dumbbell Exercise Repetition Counting and Recognition System Based on Bluetooth Wearable Devices
指導教授: 林淵翔
Yuan-Hsiang Lin
口試委員: 周迺寬
Nai-Kuan Chou
吳晉賢
Chin-Hsien Wu
陳永耀
Yung-Yao Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 94
中文關鍵詞: 動作辨識啞鈴慣性感測器藍牙接收訊號強度機器學習
外文關鍵詞: Activity recognition, Dumbbell, inertial measurement unit, Bluetooth signal strength indication, machine learning
相關次數: 點閱:261下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來國內健身風氣越來越盛行,不管是為了修飾體態或是健體強身,重量訓練都是運動計畫中相當重要的一環,無奈國內外疫情肆虐,居家健身成了人們運動的主要形式,啞鈴的便利與功能性則是居家重量訓練器材的首選。拜科技進步所賜,科學化運動除了運用在職業比賽上,也漸漸被帶入市井小民的手中,智慧化的紀錄運動數據能夠幫助訓練者檢視自己的運動歷程,進而提升訓練成效與運動意願。
    常見的運動紀錄系統包含兩個主要功能,動作計次以及動作辨識,為達成此兩種功能,本論文提出以藍牙穿戴式裝置收集慣性感測器(IMU)訊號與藍牙接收訊號強度(RSSI)來進行啞鈴的動作計次和動作辨識。其中動作計次是利用慣性感測器訊號作為判斷依據,藉由座標轉換與波峰波谷偵測來偵測運動週期。動作辨識則額外引入了RSSI訊號,透過隨機森林排序RSSI與IMU特徵的價值,選出最有效的特徵集,且在多種分類器中評估出隨機森林分類器為效能最佳分類器。
    本論文提出之系統,實驗結果顯示即時動作計次的平均準確度為99.5%,即時動作辨識的平均準確度為96.7%,且實驗結果證實RSSI能有效提高IMU所無法辨識的動作種類的準確度。


    Weight training has multiple health benefits such as improving strength and endurance and reducing health risks. During the COVID-19 pandemic, exercising at home has become the main trend for people all over the world. The convenience and functionality make dumbbells become the first choice for home weight training equipment. Without the assistance of the coach, automatic recording of exercise results by an exercise monitoring system can help users review their own exercise history, thereby improving training effectiveness and exercise willingness.
    In this thesis, we proposed a dumbbell exercise repetition counting and recognition system based on Bluetooth wearable devices, which acquire motion signals from inertial measurement units (IMU) and Bluetooth Received Signal Strength Indication (RSSI). The exercise repetition counting algorithm is based on the coordinate conversion and peak and trough detection of IMU signals. Activity recognition additionally introduces RSSI signals, the importance of IMU and RSSI feature sets are sorted by Random Forest first and evaluated with four types of classifiers which include SVM, KNN, Naive Bayes and Random Forest, the Random Forest classifier in combination with RSSI feature set come out the best performance.
    The experimental results of the system proposed in this thesis show that the average accuracy of real-time repetition counting is 99.5%, and the average accuracy of real-time activity recognition is 96.7%. Besides, the results also show that the employment of RSSI can effectively improve the recognition accuracy of the types of exercises that the IMU-based system cannot recognize.

    目錄 摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章、 緒論 1 1.1 動機與目的 1 1.2 文獻探討 2 1.2.1 影像處理應用於動作辨識 2 1.2.2 無線傳輸訊號應用於動作辨識 3 1.2.3 慣性感測器應用於動作辨識 4 1.3 論文架構 8 第二章、 研究背景 9 2.1 慣性感測器(INERTIAL MEASUREMENT UNIT, IMU) 9 2.2 姿態估計演算法(ATTITUDE ESTIMATION ALGORITHM) 10 2.3 四元數(QUATERNION) 12 2.4 接收訊號強度指示(RECEIVED SIGNAL STRENGTH INDICATION) 13 2.5 動態時間規整(DYNAMIC TIME WARPING, DTW) 14 2.6 機器學習 15 2.7 動作選擇 19 第三章、 研究方法 25 3.1 系統架構 25 3.2 藍牙穿戴式裝置 25 3.3 藍牙低功耗連線架構 27 3.4 資料分析與訓練平台 28 3.5 應用程式人機介面 29 3.6 實驗方法 30 3.7 動作分析演算法 33 3.8 動作計次 35 3.8.1 座標轉換 36 3.8.2 濾除雜訊 38 3.8.3 動作偵測與訊號分割 41 3.8.4 雙手相互驗證 47 3.8.5 延遲計次 49 3.9 動作辨識 51 3.9.1 特徵值計算 51 3.9.2 模型選擇(Model Selection) 54 第四章、 實驗結果與討論 62 4.1 動作計次離線分析 62 4.2 即時動作計次準確度驗證 66 4.3 離線動作辨識模型評估結果與RSSI訊號之辨識效能 68 4.4 即時動作辨識準確度 73 4.5 相關論文比較 77 第五章、 結論與未來展望 80 參考文獻 81

    [1] i運動資訊平台-教育部體育署, "中華民國109年運動現況調查結案報告書," 2020.
    [2] W. H. O., Global Recommendations on Physical Activity for Health. World Health Organization, 2010.
    [3] Freeletics. (2020). Freeletics surveys Americans to uncover what is in store for the fitness industry post-COVID-19. Available: https://www.freeletics.com/en/press/news/freeletics-surveys-americans-to-understand-what-is-in-store-for-the-fitness-industry-post-covid-19/
    [4] A. Nagarkoti, R. Teotia, A. K. Mahale, and P. K. Das, "Realtime Indoor Workout Analysis Using Machine Learning & Computer Vision," in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, pp. 1440-1443.
    [5] G. Dsouza, D. Maurya, and A. Patel, "Smart Gym Trainer Using Human Pose Estimation," in 2020 IEEE International Conference for Innovation in Technology (INOCON), 2020, pp. 1-4.
    [6] H. Ding et al., "A Platform for Free-Weight Exercise Monitoring with Passive Tags," IEEE Transactions on Mobile Computing, vol. 16, no. 12, pp. 3279-3293, 2017.
    [7] X. Guo, J. Liu, C. Shi, H. Liu, Y. Chen, and M. C. Chuah, "Device-free Personalized Fitness Assistant Using WiFi," Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 2, pp. 1-23, 2018.
    [8] P. Hausberger, A. Fernbach, and W. Kastner, "IMU-based Smart Fitness Devices for Weight Training," in IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, 2016, pp. 5182-5189.
    [9] X. Guo, J. Liu, and Y. Chen, "FitCoach: Virtual Fitness Coach Empowered by Wearable Mobile Devices," in IEEE INFOCOM 2017 - IEEE Conference on Computer Communications, 2017, pp. 1-9.
    [10] J. Qi, P. Yang, M. Hanneghan, S. Tang, and B. Zhou, "A Hybrid Hierarchical Framework for Gym Physical Activity Recognition and Measurement Using Wearable Sensors," IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1384-1393, 2019.
    [11] Y. Zou, D. Wang, S. Hong, R. Ruby, D. Zhang, and K. Wu, "A Low-Cost Smart Glove System for Real-Time Fitness Coaching," IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7377-7391, 2020.
    [12] 高雅珩, "基於機器學習的即時啞鈴運動識別系統," 碩士論文, 國立臺灣科技大學, 2020.
    [13] A. Filippeschi, N. Schmitz, M. Miezal, G. Bleser, E. Ruffaldi, and D. Stricker, "Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion," (in eng), Sensors (Besel, Switzerland), vol. 17, no. 6, 2017.
    [14] M. Euston, P. Coote, R. Mahony, J. Kim, and T. Hamel, "A Complementary Filter for Attitude Estimation of a Fixed-wing UAV," in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, pp. 340-345.
    [15] 鄭期元, "整合GNSS與INS量測資訊的地平面運動軌跡估測," 碩士論文, 電控工程研究所, 國立交通大學, 新竹市, 2013.
    [16] W. R. Hamilton, "On Quaternions; or On a New System of Imaginaries in Algebra," Philosophical magazine, vol. 25, no. 3, pp. 489-495, 1844.
    [17] J. B. Kuipers, Quaternions and Rotation Sequences: a Primer with Applications to Orbits, Aerospace, and Virtual Reality. Princeton university press, 1999.
    [18] V. Gao. (2015, 2021, July 5). Proximity and RSSI. Available: https://www.bluetooth.com/blog/proximity-and-rssi/
    [19] F. Itakura, "Minimum Prediction Residual Principle Applied to Speech Recognition," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 23, no. 1, pp. 67-72, 1975.
    [20] C. Shyalika. (2019). Dynamic Time Warping Algorithm for Time Series Analysis. Available: https://medium.datadriveninvestor.com/dynamic-time-warping-dtw-d51d1a1e4afc
    [21] S. Salvador and P. Chan, "Toward Accurate Dynamic Time Warping in Linear Time and Space," Intelligent Data Analysis, vol. 11, no. 5, pp. 561-580, 2007.
    [22] C. Cortes and V. Vapnik, "Support-vector networks," Machine learning, vol. 20, no. 3, pp. 273-297, 1995.
    [23] L. Breiman, "Random Forests," Machine Learning, vol. 45, no. 1, pp. 5-32, 2001 2001.
    [24] H. Zhang, "The Optimality of Naive Bayes," presented at the Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference, 2004.
    [25] N. S. Altman, "An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression," The American Statistician, vol. 46, no. 3, pp. 175-185, 1992.
    [26] Sam. Arm Workout. Available: https://www.pinterest.com/sew1090439/arm-workout/
    [27] N. Semiconductor. (2017). nRF52832 Product Specification v1.4. Available: https://infocenter.nordicsemi.com/index.jsp?topic=%2Fstruct_nrf52%2Fstruct%2Fnrf52832_ps.html
    [28] InvenSense. (2016). ICM-20649. Available: https://product.tdk.com/info/en/documents/catalog_datasheet/imu/DS-000192-ICM-20649-v1.0.pdf
    [29] F. Pedregosa et al., "Scikit-learn: Machine Learning in Python," Journal of Machine Learning Research, vol. 12, pp. 2825--2830, 2011.
    [30] S. Shen, M. Gowda, and R. R. Choudhury, "Closing the Gaps in Inertial Motion Tracking," presented at the Proceedings of the 24th Annual International Conference on Mobile Computing and Networking, 2018.
    [31] R. Chen, C. Dewi, S. Huang, and R. E. Caraka, "Selecting Critical Features for Data Classification Based on Machine Learning Methods," Journal of Big Data, vol. 7, no. 1, 2020.

    無法下載圖示 全文公開日期 2031/10/25 (校內網路)
    全文公開日期 2031/10/25 (校外網路)
    全文公開日期 2031/10/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE