簡易檢索 / 詳目顯示

研究生: 劉晏廷
Yen-Ting Liu
論文名稱: 基於慣性感測元件即時資料獲取模組之實現
Implementation of an IMU-based Real-time Data Acquisition Module
指導教授: 鄭瑞光
Ray-Guang Cheng
口試委員: 鄭瑞光
Ray-Guang Cheng
陳瑋駿
Wei-Jun Chen
林淵翔
Yuan-Hsiang Lin
呂政修
Jenq-Shiou Leu
陳仁暉
Jen-Hui Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 78
中文關鍵詞: 慣性感測元件資料獲取STM32微控制器
外文關鍵詞: Inertial Measurement Unit (IMU), Data Acquisition, STM32 Microcontroller
相關次數: 點閱:167下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有效率的獲取感測器資料是嵌入式設計中重要的一環,本論文提出一個執行在STM32微控制器的慣性感測元件即時資料獲取模組,此模組透過I2C來獲取慣性感測元件感測器的資料,透過資料融合將這些資料與其他有用的資訊合成融合後資料,並將融合後資料透過USB介面送出,我們的主要貢獻是這整個資料獲取過程可以在非常短的時間內完成,此模組也可以實現在任何一款STM32微控制器上,有了這個模組,嵌入式系統的設計者可以更有效率的獲取感測器資料。


    Efficient acquisition of sensor data is an important part of the embedded system design. This paper presents an inertial measurement unit (IMU) based real-time data acquisition module working on a STM32 microcontroller. This module acquired the IMU sensors data through I2C bus, fusing these data with other useful information into the fused data, and sent the fused out by the USB interface. Our main contribution is that the whole data acquired procedure can be finished in a tiny time. This module can also be implemented on any series of STM32 microcontroller. With this module, the embedded system designer can acquire sensor data in an efficient way.

    論文摘要 3 Abstract 4 誌謝 5 第一章 緒論 14 1.1. 文獻研究 14 1.2. 動作捕捉簡介 14 1.2.1. 獲取的方法 14 1.2.2. 傳輸介面 15 1.3. 研究動機與挑戰 15 1.4. 論文內容 16 第二章 系統架構 17 2.1. 系統架構 17 2.2. 訊息序列圖 19 第三章 系統實作 22 3.1. 開發環境介紹 22 3.1.1. 開發軟體 22 3.1.1.1. Keil μVision 5 22 3.1.1.2. STM32CubeMX 23 3.1.2. 測試軟體 24 3.1.2.1. AccessPort137 24 3.1.3. 輔助工具 25 3.1.3.1. USBDeview 25 3.1.3.2. Device Monitoring Studio 26 3.2. 開發規格 28 3.2.1. 硬體規格 28 3.2.2. 融合後資料封包規範 29 3.3. 資料獲取模組軟體主程式 30 3.3.1. 微控制器初始化設置 35 3.3.1.1. System Clock Configure 35 3.3.1.2. MX GPIO Initialization 36 3.3.1.3. MX DMA Initialization 38 3.3.1.4. MX USB Device Initialization 40 3.3.1.5. MX TIM2 Initialization 40 3.3.1.6. MX I2C Initialization 43 3.3.1.7. MX FMPI2C1 Initialization 45 3.3.2. 感測器參數設定 47 3.3.2.1. FIFO_CTRL5 47 3.3.2.2. CTRL1_XL 47 3.3.2.3. CTRL2_G 47 3.3.2.4. CTRL6_C 48 3.3.2.5. CTRL7_G 48 3.3.3. 感測器初始化設置 49 3.4. 動作捕捉 50 3.4.1.1. Read_Value() 50 3.4.1.2. Timestamp() 52 3.4.1.3. DataFusion() 52 3.5. 其他實現 53 3.5.1. 資料封包結構 53 3.5.1.1. 取得衣服資訊 53 3.5.1.2. 啟動Timer 2 54 3.5.1.3. 使用者介面 54 3.6. 硬體配置 57 第四章 測試結果 60 4.1. 收發正確性 60 4.1.1. 加速度計驗證 62 4.1.2. 陀螺儀驗證 63 4.2. 收發速度 64 4.2.1. AccessPort 65 4.2.2. Device Monitoring Studio 66 4.2.3. USB輸出 67 4.3. 收發能量損耗 69 4.3.1. HAL_Delay()對功耗的影響 69 4.3.2. FOR迴圈對功耗的影響 71 4.3.3. 收發能量損耗探討 72 4.4. 測試動作顯示模組的表現 73 第五章 結論 75 參考文獻 76

    [1] STMicroelectronics, “STM32F412 advanced ARM®-based 32-bit MCUs,” RM0402, Jun. 2016 [Revised Jun. 2016].
    [2] STMicroelectronics, “iNEMO inertial module:always-on 3D accelerometer and 3D gyroscope, “LSM6DS33 datasheet, Oct. 2015 [Revised Oct. 2015].
    [3] T. Tajti and N. Benedek, "Motion sensor data correction using multiple sensors and multiple measurements," 2016 IEEE 14th International Symposium on Applied Machine Intelligence and Informatics (SAMI), Herlany, pp. 287-291, Mar 2016
    [4] I. Prayudi and D. Kim, "Design and implementation of IMU-based human arm motion capture system," 2012 IEEE International Conference on Mechatronics and Automation, Chengdu, pp. 670-675, Aug. 2012.
    [5] D. Roetenberg, H. Luinge, and P. Slycke, “Xsens MVN: Full 6DOF human motion tracking using miniature inertial sensors,”, pp. 1–7, 2009
    [6] NXP Semiconductors, I2C-bus specification and user manual.
    [7] A. L. Rincon, H. Yamasaki, and S. Shimoda, "Design of a video game for rehabilitation using motion capture, EMG analysis and virtual reality," in 2016 International Conference on Electronics, Communications and Computers (CONIELECOMP), Cholula: IEEE, 2016, pp. 198–204.
    [8] S.-K. Kim, S. Hong and D. Kim, "A Walking Motion Imitation Framework of a Humanoid Robot by Human Walking Recognition from IMU Motion Data," IEEE-RAS Intl. Conf. on Humanoid Robots, pp. 343- 348, December 2009.
    [9] T. Bhosale, H. Kudale, V. Kumthekar, S. Garude and P. Dhumal, "Gait analysis using wearable sensors," 2015 International Conference on Energy Systems and Applications, Pune, pp. 267-269, Jul. 2015.
    [10] N. Millor, P. Lecumberri, M. Gomez, A. Martinez-Ramirez, and M. Izquierdo, “Drift-free position estimation for periodic movements using inertial units,” IEEE J. Biomed. Health Informat., vol. 18, no. 4, pp. 1131–1137, Jul. 2014.

    QR CODE