簡易檢索 / 詳目顯示

研究生: 蘇彥安
Yan-an Su
論文名稱: 電腦輔助模擬矽膜重熔與凝固長晶之研究
A Study of Computer Simulation on Re-melting and Crystal Growth of Silicon Film
指導教授: 雷添壽
Tien-shou Lei
口試委員: 葉文昌
Wen-chang Yeh
陳信吉
Shin-jyi Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 78
中文關鍵詞: 矽膜電腦模擬
外文關鍵詞: silicon film, computer simulation
相關次數: 點閱:423下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

準分子雷射常用於重熔矽膜,以製備低溫多晶矽,製程參數的設定,大都是以實驗方式得到。由於電腦科技的進步,模擬鑄件的凝固已被用工業廣為採用。本論文主要目的是以ProCAST模擬矽膜的重熔與凝固,並利用長晶模組CAFE研究矽膜凝固的成核與晶粒成長的機制。研究過程包括建立矽膜熱傳模型,物理性質的評估,以及分析雷射能量及長晶成核密度對矽膜溫度的影響。結果顯示:(1) 矽膜熔化後維持為液態時間受到雷射能量、界面熱阻及底層溫度的影響;(2)矽膜凝固的主要核凝機制是面成核,面成核的密度及位置將會影響晶粒的大小及形態。


Excimer lasers have been used to re-melt silicon film to fabricate low temperature poly-silicon (LTPS); it needs to conduct experiments to settle the processing parameters. The advanced computer technologies have been used to simulate the solidification of castings by foundry industries. In this research it is aimed to use ProCAST to simulate the re-melting and solidification of silicon film, CAFE is also used to study the nucleation and growth mechanisms of silicon film solidification. This study has included the construction of models, data reviewing, and analyzing the effect of energy intensity and nuclei density on the temperature of the silicon film. The results show that: (1) The silicon melting duration time is affected by the laser intensity, interfacial thermal resistance and the temperature of sub-layer; (2) Surface nucleation is the controlling mechanism in the solidification, the nuclei density and locations of the surface nucleation will affect the size and morphology of the solidified grains in the silicon film.

中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 符號索引 VII 圖目錄 IX 表目錄 XIII 第一章 前言 1 第二章 文獻回顧 3 2.1. 準分子雷射原理與特性 3 2.2. 低溫多晶矽薄膜的製程及優點 3 2.3. 矽膜的凝固機制 5 2.3.1. 部份熔化 7 2.3.2. 幾乎全熔 7 2.3.3. 完全熔化 9 2.3.4. 能量分布對矽膜長晶的影響 10 2.4. PROCAST軟體 12 2.5. 長晶模組CAFE 13 2.5.1. 過冷度及成核設定 13 2.5.2. 成長速度的影響 15 第三章 實驗方法 19 3.1. 熱傳方程式與條件的簡化 19 3.2. 模型建構 21 3.3. PROCAST的操作 22 3.3.1. 模型網格製作 22 3.3.2. 能量設定 23 3.3.3. 模擬的熱傳方程式 24 3.3.4. 材料參數設定 25 3.4. CAFE的操作 29 3.4.1. 成核參數的設定 29 第四章 結果與討論 35 4.1. 非晶矽的模擬結果 37 4.1.1. 能量密度的影響 37 4.1.2. 熱阻界面的影響 44 4.1.3. 底部溫度的影響 47 4.2. 多晶矽模擬結果 50 4.2.1. 溫度分布圖 50 4.2.2. 長晶結果 51 4.3. 多晶矽部分熔化的模擬結果 55 4.4. 成核機制與密度的影響 62 4.4.1. 成核密度對溫度曲線的影響 63 4.4.2. 成核個數與成核密度的關係 63 第五章 結論 72

[1]M. W. Geis, D. C. Flanders, and H. I. Smith, "Crystallographic orientation of silicon on an amorphous substrate using an artificial surface-relief grating and laser crystallization," Appl. Phys. Lett, vol. 35, p. 71, 1979.
[2]Y. R. Chen, C. H. Chang, and L. S. Chao, "Modeling and experimental analysis in excimer-laser crystallization amorphous si film on a glass substrate with different buffer layers," J. Am. Ceram. Soc., vol. 90, pp. 688-692, 2007.
[3]Y. R. Chen, "Study on the processing of low-temperature poly-si thin film," M.S. ,National Chen Kung University ,Tainan, 2004.
[4]J. F. Michaud, R. Rogel, T. M. Brhim, and M. Sarret, "Cw argon laser crystallization of silicon films: Structural properties " J. Non-Cryst. Sol., vol. 352, p. 998, 2006.
[5]C. B. Chen, "Investigation of si thin films recrystallization mechanism during excimer laser annealing using in-situ time-resolved optical reflection and transmission measurement," M.S. ,National Taiwan University of Sicence and Technology, Taipei, 2005.
[6]C. F. Tsai, "Computer aided simulation of the solidification of re-melted silicon film," M.S. ,National Taiwan University of Sicence and Technology, Taipei, 2006.
[7]C. C. Kuo, "Development of in-situ time-resolved optical inspection system for thin films fabricated by excimer laser annealing and investigation on recrystallization mechanism," M.S. ,National Taiwan University of Sicence and Technology, Taipei, 2007.
[8]Y. T. Chen, "Computer simulation on the remelting and solidification of LCD silicon film," M.S. ,National Taiwan University of Sicence and Technology, Taipei, 2007.
[9]D. R. Askeland and P. P. Phulé, The science and engineering of materials. Toronto: Thomson, 2006
[10]Z. D. Jastrzebski, The nature and properties of engineering materials. New York: Wiley, 1987.
[11]J. S. Im, H. J. Kim, and M. O. Thompson, "Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films," Appl. Phys. Lett., vol. 63, October (1993).
[12]F. C. Voogt, R. Ishihara, and F. D. Tichelaar, "Melting and crystallization behavior of low-pressure chemical-vapor- deposition amorphous Si films during excimer-laser annealing," Journal of Applied Physics,, vol. 95, pp. 2873-2879 March (2004).
[13]W. C. Yeh and M. Matsumura, "Effects of a low-melting-point underlayer on excimer-laser-induced lateral crystallization of Si thin-film," Jpn. J. Appl. Phys, vol. 40, pp. 3096-3100, 2001.
[14]L. H. Kuo, "Study on procast simulate procedure for poly-si film crystallization," M.S. ,National Taiwan University of Sicence and Technology, Taipei, 2005.
[15]S. ESI, ProCast User Manual vol. 1 and 2. France, 2008.1.
[16]C.-A. Gandin, "Modélisation stochastique de la solidification: formation de structures de grains dendritiques,," Thèse EPFL, Thèse EPFL.
[17]M. Rappaz and C. A. Gandin, "Probabilistic modelling of microstructure formation in solidification processes," Acta Metallurgica et Materialia, vol. 41, pp. 345-360, 1993.
[18]H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuwahara, S. Ishida, T. Nohda, K. Sano, H. Iwata, H. Kawata, M. Osumi, S. Tsuda, S. Nakano, and Y. Kuwano, "Enlargement of poly-si film grain size by excimer laser annealing and its application to high-performance poly-Si thin film transistor," Jpn. J. Appl. Phys., vol. 30, pp. 3700-3703, 1991.
[19]C. F. Lee, "Investigation of low temperature poly silicon analysis process parameter during excimer laser annealing using in-situ time-resolved optical reflection and transmission measurement," M.S. ,National Taiwan University of Sicence and Technology, Taipei, 2006, p. 47.
[20]C. K. Ong, E. H. Sin, and H. S. Tan, "Heat-flow calculation of pulsed excimer ultraviolet laser's melting of amorphous and crystalline silicon surface," vol. 15, p. 3, january 15,1986 1986.
[21]M. O. Thompson, G. J. Galvin, J. W. Mayer, P. S. peercy, J. M. Poate, D. C.Jacobson, A. G. Cullis, and N. G. Chew, "Melting temperature and explosive crystallization of amorphous silicon during pulsed laser irradiation," The American Physical Society, vol. 52, 25 june,1984.
[22]K. Yamamoto, T. Abe, and S. I. Takasu, "Thermal diffusivity of crystalline and liquid silicon and an anomaly at melting," Japanese journal of applied physics, vol. 30, pp. 2423-2426, October, 1991.
[23]C. Panofen, R. P. Liu, D. Holland, T. Volkmann, and D. M. herlach, Undercooling and solidification of liquid silicon. Uk: WILEY-VCH Verlag Gmbh & Co. KGbA,Weinheim, 2004.
[24]D. Dutartre, "Maximum supercooling of silicon encapsulated in SiO2," J. Appl. Phys, vol. 59, 15 March,1985.

QR CODE