簡易檢索 / 詳目顯示

研究生: 廖寶玉
Pao-yu Liao
論文名稱: 製備四氧化三鐵/二氧化矽/抗人血清白蛋白/碲化鎘核殼奈米粒子於磁微影光學免疫測試之應用
Fabrication of Fe3O4@SiO2@anti-ALB/CdTe Core-shell Nanoparticles for Optical Immunosorbent Assay with Magnetolithography
指導教授: 陳建光
Jem-kun Chen
口試委員: 邱顯堂
Hsien-tang Chiu
李俊毅
none
楊銘乾
Ming-chien Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 114
中文關鍵詞: 超順磁性核殼結構Protein GELISA量子點遮蔽效應圖案化感測器磁微影
外文關鍵詞: Superparamagnetism, Core-shell structures, Protein G, ELISA, Quantum dots, Shelter effect, Patterned detector, Magnetolithography
相關次數: 點閱:242下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

於本研究中我們製備了四氧化三鐵超順磁性奈米粒子,並運用溶膠凝膠法(sol-gel process)合成核殼結構(core-shell)之Fe3O4@SiO2奈米粒子,予以改質後,將Protien G鍵結於奈米粒子表面,以增加抗體的順向性;接著,我們於其表面同時接上抗人體血清蛋白(anti-ALB)及碲化鎘(CdTe),並透過CdTe之螢光遮蔽效應用以檢測人體血清蛋白(ALB),最終利用圖案化鎳-磁性模具作為磁微影遮罩使奈米粒子產生圖案化,並應用於光學免疫測試。
首先我們以超導量子干涉磁量儀(SQUID)及穿透式電子顯微鏡(TEM)證實合成之奈米粒子為核殼結構且具有超順磁性,並經由螢光光譜(FP)以及酵素連結免疫吸附分析法(ELISA)探討具有抗體順向性之奈米粒子的螢光遮蔽效率及抓取抗原之能力,發現有鍵結Protein G之奈米粒子不僅抓取抗原的能力高達2.2614μg/mg,且螢光遮蔽效率更提升至59.40%,已可於肉眼明顯觀察其亮度之變化。
接著利用磁力顯微鏡(MFM)證實製備出線寬為1μm、3μm及洞寬為500nm之鎳-磁性模具,並經由光學顯微鏡(OM)及雷射共軛焦顯微鏡(CLSM)證實利用線寬3μm鎳-磁性模具可製成最小尺寸且完整之圖案化感測器,並成功應用於光學免疫測試。


In this study, we fabricated superparamagnetism nanoparticles and core-shell structures comprising Fe3O4 and SiO2 as the core and shell components, respectively. After surface modified with NH2 group(MNPs), Protein G was bound to the surface of MNPs for increasing the orientation of anti-ALB. Then, anti-ALB and CdTe were bound to MNP@Protein G and we detected ALB by the shelter effect of CdTe. In addition, we patterned composite nanoparticles by Ni-mask with magnetolithography for immunosorbent assay.
Superconducting Quantum Interference Device Magnetometer (SQUID) and Transmission Electronmicro-scope(TEM) revealed superparamagnetism and the core/shell structure. Then we investigated the orientation of anti-ALB with the sheltered efficiency and the ability of binding antigen by Spectrofluorometer(FP) and Enzyme-linked immunosorbent assay (ELISA). We also demonstrated the amounts of ALB and the sheltered efficiency were achieved to 2.2614μg/mg and raised to 59.40%, respectively. We could observe the difference of the fluorescent intensity significantly.
Finally, the Ni-masks were successful fabricated with the line-width (1μm and 3μm) and hole-width (500nm). Then, we demonstrated we used the Ni-mask of line-width 3μm to show the smallest scale and complete pattern for optical immunosorbent assay by Optical Microscope(OM) and Confocal Spectral Microscope Imaging System(CLSM).

摘要 III Abstract IV 致謝 VI 目錄 VII 表目錄 XI 圖目錄 XII 第1章 前言 1 1.1 研究背景 1 1.2 研究動機與目的 2 第2章 理論與文獻回顧 3 2.1 磁性材料 3 2.1.1 磁學理論 3 2.1.2 超順磁性氧化鐵 9 2.1.3 磁微影技術 11 2.2 溶膠凝膠法 13 2.3 Protein G 17 2.4 量子點 19 2.5 抗體 22 2.6 人血清白蛋白 24 2.7 酵素連結免疫吸附分析法(ELISA) 25 2.8 圖案化感測器 27 第3章 儀器原理 29 3.1 超導量子干涉磁量儀 29 3.2 X射線光電子能譜儀 33 3.3 磁力顯微鏡 34 3.4 共軛焦顯微鏡 36 第4章 實驗流程與方法 38 4.1 實驗流程圖 38 4.2 實驗藥品 39 4.3 實驗儀器 42 4.4 實驗步驟 45 4.4.1 Fe3O4奈米粒子之製備 45 4.4.2 Fe3O4@SiO2核殼奈米粒子之製備 46 4.4.3 胺基修飾Fe3O4@SiO2表面(MNP)之製備 47 4.4.4 MNP@Protein G奈米粒子之製備 48 4.4.5 量子點CdTe之合成 50 4.4.6 MNP@anti-ALB/CdTe奈米粒子之製備 51 4.4.7 MNP@anti-ALB/CdTe@ALB之製備 52 4.4.8 製備圖案化之鎳-磁性模具 54 4.4.9 利用磁微影製備圖案化感測器 56 第5章 結果與討論 57 5.1 MNP@anti-ALB/CdTe@ALB奈米粒子之化性分析 57 5.1.1 FT-IR光譜分析 59 5.1.2 XPS能譜分析 62 5.1.3 UV-Vis光譜分析 72 5.1.4 FP光譜分析 79 5.1.5 XRD結晶分析 84 5.1.6 SQUID磁性分析 86 5.1.7 DLS粒徑分析 88 5.2 MNP@anti-ALB/CdTe@ALB奈米粒子之形態分析 90 5.2.1 SEM表面形態分析 90 5.2.2 TEM形態分析 94 5.3 磁微影光學免疫測試分析 100 5.3.1 MFM性質與型態分析 100 5.3.2 OM影像分析 104 5.3.3 雷射共軛焦顯微鏡(CLSM)之影像分析 107 第6章 結論 109 參考文獻 110

1. W. Meissner , R. O., Ein neuer Effekt bei Eintritt der Supraleitfahigkeit. Naturwissenschaften 1933, 21, (44), 2.
2. Kittel, C., Introduction to Solid State Physics 6th. John Wiley & Sons: 1986.
3. Cheng, D. K., Field and Wave Electromagnetics,3rd ed. Addison-Wesley: New York, 1989.
4. Lai, Y.; Yin, W.; Liu, J.; Xi, R.; Zhan, J., One-Pot Green Synthesis and Bioapplication ofl-Arginine-Capped Superparamagnetic Fe3O4 Nanoparticles. Nanoscale research letters 2009, 5, (2), 302-7.
5. N. Van Landschoot A E. M. Kelder A J. Schoonman, Synthesis and characterization of LiCo1)xFexVO4 prepared by a citric acid complex method. J Solid State Electrochem 2003, 8, 6.
6. Dias, A. M.; Hussain, A.; Marcos, A. S.; Roque, A. C., A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnology advances 2011, 29, (1), 142-55.
7. Wang X, Z. C., Zhao P, Dou P, Ding Y, Xu P, Gellan gel beads containing magnetic nanoparticles: an effective biosorbent for the removal of heavy metals from aqueous system. Bioresour Technol 2009, 100, 4.
8. Wang Y, W. X., Luo G, Dai Y., Adsorption of bovin serum albumin (BSA) onto the magnetic chitosan nanoparticles prepared by a microemulsion system. Bioresour Technol 2008, 99, 4.
9. Xuan, S.; Wang, Y. X.; Yu, J. C.; Leung, K. C., Preparation, characterization, and catalytic activity of core/shell Fe3O4@polyaniline@au nanocomposites. Langmuir : the ACS journal of surfaces and colloids 2009, 25, (19), 11835-43.
10. Li, H. D., Li, Z., Liu, T., Xiao, X., Peng, Z.H., Deng, L., A novel technology for biosorption and recovery hexavalent chromium in wastewater by biofunctional magnetic beads. Bioresource Technology 2008, 99, 9.
11. Kim, E. H., Lee, H.S., Kwak, B.K., Kim, B.K., Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. Journal of Magnetism and Magnetic Materials 2005, 289, 3.
12. Olsvik, O. P., T.; Skjerve, E.; Cudjoe, K. S.; Hornes, E.;; Ugelstad, J. U., M., Magnetic Separation Techniques in Diagnostic Microbiology. Clin. Microbiol. Rev 1994, 7, 12.
13. Gupta, P. K. H., C. T.; Lam, F. C.; Perrier, D. G., Albumin Microspheres. III. Synthesis and Characterization of Microspheres Containing Adriamycin and Magnetite. Int. J. Pharm 1988, 43, 11.
14. Neuberger, T. S. p., B.; Hofmann, H.; Hofmann, M, von Rechenberg, B, Superparamagnetic Nanoparticles for Biomedical Applications: Possibilities and Limitations of a New Drug Delivery System. J. Magn. Magn. Mater 2005, 293, 14.
15. Jordan, A. W., P.; Fahling, H.; Scholz, R., Inductive Heating of Ferrimagnetic Particles and Magnetic Fluids: Physical Evaluation of Their Potential for Hyperthermia. Int. J. Hyperthermia 1993, 9, 8.
16. Hafeli, U., Schutt, W., Teller, J., Zborowski, M., , Scientific and Clinical Applications of Magnetic Carriers. Plenum Press: New York and London, 1997.
17. Widjojoatmodjo, M. N. F., A. C.; Torensma, R.; Verhoef, J., Comparison of Immunomagnetic Beads Coated with Protein A, Protein G, or Goat Anti-mouse Immunoglobulins. Applications in Enzyme Immunoassays and Immunomagnetic Separations. J. Immunol. Methods 1993, 165, 9.
18. Bardea, A.; Naaman, R., Magnetolithography: from bottom-up route to high throughput. Small 2009, 5, (3), 316-9.
19. Park, J. I.; Jun, Y. W.; Choi, J. S.; Cheon, J., Highly crystalline anisotropic superstructures via magnetic field induced nanoparticle assembly. Chemical communications 2007, (47), 5001-3.
20. Ito, A.; Akiyama, H.; Kawabe, Y.; Kamihira, M., Magnetic force-based cell patterning using Arg-Gly-Asp (RGD) peptide-conjugated magnetite cationic liposomes. Journal of bioscience and bioengineering 2007, 104, (4), 288-93.
21. Kumar, R. M., H., Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 2005, 26, 8.
22. Young, S. K., Jarrett, W. L., Mauritz, K.A, NafionR/ORMOSIL nanocomposites via polymer-in situ sol–gel reactions. 1. Probe of ORMOSIL phase nanostructures by 29Si solid-state NMR spectroscopy. Polymer 2002, 43, 10.
23. Sun, X., Xu, Y., Jiang, D., Yang, D., Wu, D., Sun, Y., Yang, Y., Yuan, H., et. al., Study on the ammonia-catalyzed hydrolysis kinetics of single phenyltriethoxysilane and mixed phenyltriethoxysilane/tetraethoxysilane systems by liquid-state 29Si NMR. Colloids and Surfaces A 2006, 289, 9.
24. Kickelbick, G., Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. PROG POLYM SCI. 2003, 28, 32.
25. Kachurina, O., Metroke, T. L., Knobbe, E. T., Technique for the removal of organic–inorganic hybrid coatings from 2024-T3 aluminum all. PROG ORG COAT. 2003, 47, 6.
26. Dianyu, C., Zhengxing, W., Preparation and polymerization catalysis studies of the active carbon loaded catalyst of silicotungstic acid. Chemistry mag. Org. 2007, 9, 8.
27. Iler, R. K., The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica. Wiley: New York, 1979.
28. Bilitewski, U., Protein-sensing assay formats and devices. Analytica Chimica Acta 2006, 568, (1–2), 232-247.
29. Mathias Uhlen, Bengt Guss, Bjorn Nilsson, Gatenbeck,LennarPt
hilipson, and Martin Lindberg, Complete Sequence of the Staphylococcal Gene Encoding Protein A. The Journal of Biological Chemistry 1984, 259, 8.
30. Bengt Guss, M. E., Anders Olsson,Mathias Uhlen, Ann-Kristin Frej, Hans Jornvall, Jan Ingmar Flock and Martin Lindberg, Structure of the IgG-binding regions of streptococcal protein G. The EMBO Journal 1986, 5, 9.
31. Song, H. Y.; Zhou, X.; Hobley, J.; Su, X., Comparative study of random and oriented antibody immobilization as measured by dual polarization interferometry and surface plasmon resonance spectroscopy. Langmuir : the ACS journal of surfaces and colloids 2012, 28, (1), 997-1004.
32. Zhili Zheng, Nachimuthu Chinnasamy ,Richard A Morgan, Protein L: a novel reagent for the detection of Chimeric Antigen Receptor (CAR) expression by flow cytometry , Journal of Translational Medicine 2012, 10, (29).
33. Takagahara, T.; Takeda, K., Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Physical Review B 1992, 46, (23), 15578-15581.
34. Murray, C. B.; Norris, D. J.; Bawendi, M. G., Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society 1993, 115, (19), 8706-8715.
35. Mews, A.; Eychmueller, A.; Giersig, M.; Schooss, D.; Weller, H., Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide. The Journal of Physical Chemistry 1994, 98, (3), 934-941.
36. Hines, M. A.; Guyot-Sionnest, P., Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals. The Journal of Physical Chemistry 1996, 100, (2), 468-471.
37. Peng, Z. A.; Peng, X., Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor. Journal of the American Chemical Society 2001, 123, (1), 183-184.
38. Khatei, J.; Koteswara Rao, K. S. R., Hydrothermal synthesis of CdTe QDs: Their luminescence quenching in the presence of bio-molecules and observation of bistable memory effect in CdTe QD/PEDOT:PSS heterostructure. Materials Chemistry and Physics 2011, 130, (1-2), 159-164.
39. K. M. Robert, K. G. D., A. M. Peter, W. R. Victor, CT: Appleton and Lange Stamford, 2000.
40. David L. Nelson, Michael M. Cox, Lehninger principles of biochemistry. WH Freeman: 2008; p 869-870.
41. Muhammad, N.; Dworeck, T.; Fioroni, M.; Schwaneberg, U., Engineering of the E. coli outer membrane protein FhuA to overcome the hydrophobic mismatch in thick polymeric membranes. Journal of nanobiotechnology 2011, 9, 8.
42. Joonhyung Lee, K. I., Ana Roberts, Andrew D. Ellington, and Cagri A. Savran, Diffractometric Detection of Proteins Using Microbead-Based Rolling Circle Amplification. Anal. Chem. 2010, 82, 6.
43. 陳昭翰, 超導量子干涉元件發展的回顧與展望. 台灣磁性技術協會 2010.
44. Bruker Probe Catalog. In Bruker: 2012.
45. 美嘉儀器股份有限公司共軛焦小組, 徠卡雷射掃描共軛焦顯微鏡之技術與應用概論. 美嘉儀器股份有限公司: 2000.
46. S. Chen, J. Z., Y. Shen, C. Hu, L. Chen, Synthesis of Nanocrystal−Polymer Transparent Hybrids via Polyurethane Matrix Grafted onto Functionalized CdS Nanocrystals. Langmuir : the ACS journal of surfaces and colloids 2007, 23, 5.
47. Fernanda O Silva, M. S. C., Renato Mendonca, Waldemar AA Macedo, Karla Balzuweit,; Schiavon, P. R. a. M. A., Effect of surface ligands on the optical properties of aqueous soluble CdTe quantum dots. Nanoscale research letters 2012, 7, 10.
48. Ji-Zhao Guo and Hua Cui, Lucigenin Chemiluminescence Induced by Noble Metal Nanoparticles in the Presence of Adsorbates. J. Phys. Chem. C 2007, 111, 6.
49. Haiyan Wu, Zhaoyun Ding, Mei Peng, Qijun Song, Quantum dot induced phototransformation of 2,4-dichlorophenol, and its subsequent chemiluminescence reaction Microchim Acta 2012, 178, 8.
50. Sun, J. F.; Ren, C. L.; Liu, L. H.; Chen, X. G., CdTe quantum dots as fluorescence sensor for the determination of vitamin B6 in aqueous solution. Chinese Chemical Letters 2008, 19, (7), 855-859.
51. Burns, J. C., Mineral,Neues Jahrb. Monatsh, . 1997.
52. Li, C. L.; Chen, J. K.; Fan, S. K.; Ko, F. H.; Chang, F. C., Electrorheological operation of low-/high-permittivity core/shell SiO2/Au nanoparticle microspheres for display media. ACS applied materials & interfaces 2012, 4, (10), 5650-61.
53. Doren, P. E. V. C. V. E. V., Structural phase transformation and ground state properties of cadmium telluride Solid State Commun. 1994, 91, (8), 4.

無法下載圖示 全文公開日期 2016/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE