簡易檢索 / 詳目顯示

研究生: 徐淑琪
Shu-Chi Hsu
論文名稱: 製程參數對Ag@CeO2核殼奈米顆粒中介面結構之影響
Effect of process parameters on interface structure of Ag@CeO2 core-shell nanoparticles
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 陳良益
Liang-Yih Chen
羅聖全
Shen-Chuan Lo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 74
中文關鍵詞: 核殼結構電子顯微鏡及能譜分析介面奈米顆粒
外文關鍵詞: core-shell structure, TEM/EELS, interface, nanoparticles
相關次數: 點閱:212下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以穿透式電子顯微鏡結合具高靈敏度、高能量解析度之能量分布分析儀及電子能量損失能譜對Ag@CeO2核殼結構奈米顆粒的介面結構進行詳細的分析,探討製程參數對Ag核表面型態,以及後續殼層沉積的影響。Ag@CeO2核殼結構奈米顆粒是以二階段式化學法合成,Ag奈米核以熱輔助光還原法,CeO2殼層則由化學還原法製備。研究結果顯示,以熱輔助光還原法合成的Ag核表面會自發形成一層極薄的氧化層,其緻密性及組成與所使用的基板、成長溫度、以及Ag核的粒徑有關。此氧化層的存在對後續的殼層沉積扮演極重要的角色: 緻密的氧化層,尤其是組成為TiOx時,可得到良好的核殼結構。此外,電子能量損失能譜結果則顯示在Ag核及CeO2殼層間確實有電荷轉移的作用,此現象造成在介面附近的CeO2中Ce3+的比例提高,且此作用的深度和殼層厚度沒有明顯關聯性。


    In this study, interfaces between Ag and CeO2 of Ag@CeO2 core-shell nanoparticles (NPs) were investigated by using transmission electron microscopy (TEM) equipped with energy dispersive spectroscopy (EDS) and electron energy loss spectroscopy (EELS) with high energy resolution. Ag@CeO2 core-shell NPs were synthesized by two-steps chemical reduction method. Effects of process parameters on the feature of surface of Ag core as well as the subsequent deposition of CeO2 shell were studied at first. A native thin oxide layer on the surface of Ag core was observed. Structure of this thin oxide layer was closely related to the type of substrate, growth temperature and the size of Ag core. The existence of native thin oxide layer is essential to the subsequent deposition of CeO2 shell. In addition, according to EELS analysis, charge transfer between Ag core and CeO2 shell was seen, which results in the reduction of Ce4+. At last, it is found that the area affected by charge transfer was narrow and was not dependent on the thickness of CeO2 shell.

    摘要 Ⅰ Abstract Ⅱ 致謝 Ⅲ 目錄 Ⅳ 圖索引 Ⅵ 表索引 Ⅷ 第一章 緒論 1 1.1 前言 1 1.2 研究背景 3 1.3 研究動機與目的 5 第二章 文獻回顧與理論介紹 7 2.1 核殼奈米材料 7 2.1.1無機-無機核殼奈米材料 7 2.1.1.1半導體核殼奈米材料 7 2.1.1.2雙金屬核殼奈米材料 8 2.1.1.3氧化物核殼奈米材料 8 2.1.2無機-有機核殼奈米材料 8 2.1.3有機-有機核殼奈米材料 9 2.1.4無機-生物分子奈米複合材 9 2.2金屬-金屬氧化物之核殼奈米結構 11 2.2.1 金屬晶核導向磊晶成長 12 2.2.2 以分子修飾之金屬核引導金屬氧化物殼層成長 14 2.2.3 水熱輔助方法 16 2.3銀(Ag)奈米顆粒-二氧化鈰(CeO2)核殼奈米粒子 17 2.3.1 Ag@CeO2的特性 17 2.3.2 CeO2的特性 20 2.3.2.1 CeO2晶體結構及化學性質 20 2.3.2.2 CeO2的溫室鐵磁性特性 22 2.3.3 Ag@CeO2的製備方法 24 2.3.3.1 Ag奈米粒子的合成 24 2.3.3.2熱輔助光還原法(Thermally Assisted Photoreducition, TAP) 26 第三章 實驗方法 29 3.1 實驗流程 29 3.2 Ag@CeO2核殼結構樣品製備 30 3.2.1 Ag奈米顆粒之製備 30 3.2.2 CeO2殼層沉積 31 3.3 樣品結構及性質分析 33 3.3.1 低掠角X光繞射(XRD) 33 3.3.2 紫外線可見光吸收光譜儀(UV-Vis) 35 3.3.3 掃描式電子顯微鏡(SEM) 36 3.3.4 穿透式電子顯微鏡(TEM) 36 3.3.4.1 電鏡樣品製備 36 3.3.4.2 TEM儀器及功能介紹 37 3.3.5 X光吸收光譜 (XAS) 38 第四章 結果與討論 41 4.1 Ag奈米顆粒之合成與微結構分析 41 4.1.1 在不同基板上(TiO2或CeO2)成長Ag奈米顆粒 45 4.1.1.1 在TiO2基板上成長 45 4.1.1.2 在CeO2基板上成長 47 4.1.2 在不同溫度下(200℃)成長Ag奈米顆粒 49 4.2 CeO2殼層之製備 52 4.2.1以化學還原法合成CeO2 52 4.2.2在具備不同表面形態之Ag顆粒表面沉積CeO2 53 4.2.2.1於300℃下,在TiO2基板上合成之Ag顆粒 53 4.2.2.2於300℃下,在CeO2基板上合成之Ag顆粒 55 4.2.2.3於200℃下,在TiO2基板上合成之Ag顆粒 58 4.3 Ag@CeO2奈米核殼顆粒介面之探討 61 第五章 結論 66 參考文獻 67

    [1] Henglein, Arnim. Chemical Reviews 89.8, pp.1861 (1989).
    [2] Hoener, Carolyn F., The Journal of Physical Chemistry 96.9 pp.3812 (1992).
    [3] 陳東煌. "複合奈米粒子的製備與應用" 化工技術 120 pp.180 (2003).
    [4] 陳嘉祈和呂世源. "奈米核殼粒子與奈米中空球之製備與應用" 化工技術120 pp.194 (2003).
    [5] F. Caruso. Advanced Materials 13, pp.11 (2001).
    [6] 柯揚船,皮特斯壯 (2004) 聚合物-無機奈米複合材料,臺北:五南。
    [7] 莊浩宇,二氧化鈦奈米粒子及其金屬核殼型奈米複合材料之製備與應用研究,國立成功大學博士論文,(2009)
    [8] Smith J.N., Meadows J. and Williams P.A. , Langmuir, 12, pp.3773 (1996).
    [9] Kim S., Fisher B., Eisler H.J., Bawendi M., J. Am. Chem. Soc., 125, pp.11466 (2003).
    [10] T. J. Silva, S. Schultz, Rev. Sci. Instrum, 67, pp.715 (1996).
    [11] Kalele S.A., Ashtaputre S.S., Hebalkar N.Y., Gosavi S.W., Deobagkar D.N., Deobagkar D.D., Chem. Phys. Lett., 404, pp.136 (2005).
    [12] West J.L., Halas N.J., , Annu. Rev. Biomed. Eng., 5, pp285-292 (2003).
    [13] Li, Guodong, and Zhiyong Tang. Nanoscale 6.8 ,pp.3995 (2014).
    [14] 梁藝礬,合成二氧化矽/銀核殼結構及其表面電漿子共振引發之光催化效應研究,國立清華大學碩士論文,2012
    [15] Ghosh Chaudhuri, Rajib, and Santanu Paria. Chemical reviews 112.4 pp.2373 (2011).
    [16] Skoda, M., et al. The Journal of chemical physics 130.3 ,pp.034703 (2009).
    [17] Han, Mingyong, et al. Nature biotechnology 19.7 ,pp .631 (2001).
    [18] Morriss, R. H., and L. F. Collins. The Journal of Chemical Physics 41.11 pp.3357 (1964).
    [19] Toshima, N., et al. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics 16.1, pp. 209 (2001).
    [20] Ahn, C. H.; Choi, J. W.; Cho, H. J. Nanomagnetics for biomedical applications. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 6, pp.815 (2004).
    [21] Tartaj, P. Nanomagnets for biomedical applications. In:Nalwa, H. S., ed. Encyclopedia of Nanoscience and NanotechnologyCalifornia:American Scientific Publishers, Vol. 6, pp.823(2004).
    [22] Berry, Catherine C., and Adam SG Curtis. Journal of physics D: Applied physics 36.13 (2003): R198.
    [23] Shinkai, Masashige. Journal of bioscience and bioengineering 94.6 (2002): 606-613.W. Ostwald, Z. Phys. Chem. 34, pp. 495 (1900).
    [24] Zhang, Nan, Xianzhi Fu, and Yi-Jun Xu. Journal of Materials Chemistry 21.22, pp.8152 (2011).
    [25] Huang, Jianmei, et al. Journal of Materials Chemistry 21.44, pp.17930 (2011).
    [26] Qi, Jian, et al. Energy & Environmental Science 5.10 ,pp.8937 (2012).
    [27] Zhang, Jun, et al. Journal of Materials Chemistry 22.21 ,pp.10480 (2012).
    [28] Mitsudome, Takato, et al. Angewandte Chemie International Edition 51.1 ,pp.136 (2012).
    [29] Sun, Hang, et al. Journal of the American Chemical Society 135.24, pp.9099 (2013).
    [30] Chen, Junchen, et al. Nano Research 6.12, pp.871 (2013).
    [31] Liang, Fengli, Wei Zhou, and Zhonghua Zhu. ChemElectroChem 1.10, pp.1627 (2014).
    [32] J. H. Hodak, A. Henglein, M. Giersig and G. V. Hartland, J. Phys. Chem. B 104, pp.11708 (2000).
    [33] Z. Zhuang, Q. Peng and Y. Li, Chem. Soc. Rev., 2011, 40,5492.
    [34] P. Li, Z. Wei, T. Wu, Q. Peng and Y. Li, J. Am. Chem. Soc., 2011, 133, 5660.
    [35] H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White and S. Sun, Nano Lett., 2005, 5, 379.
    [36] W. Shi, H. Zeng, Y. Sahoo, T. Y. Ohulchanskyy, Y. Ding,Z. L. Wang, M. Swihart and P. N. Prasad, Nano Lett., 2006, 6, 875.
    [37] J. Huang, Y. Sun, S. Huang, K. Yu, Q. Zhao, F. Peng, H. Yu, H. Wang and J. Yang, J. Mater. Chem., 2011, 21, 17930.
    [38] C. Wang, H. Yin, S. Dai and S. Sun, Chem. Mater., 2010, 22, 3277.
    [39] N. Meir, I. J.-L. Plante, K. Flomin, E. Chockler,B. Moshofsky, M. Diab, M. Volokh and T. Mokari, J. Mater. Chem. A, 2013, 1, 1763.
    [40] D.-Y. Liu, S.-Y. Ding, H.-X. Lin, B.-J. Liu, Z.-Z. Ye, F.-R. Fan, B. Ren and Z.-Q. Tian, J. Phys. Chem. C, 2012, 116, 4477.
    [41] W.-C. Wang, L.-M. Lyu and M. H. Huang, Chem. Mater., 2011, 23, 2677.
    [42] J. Li, S. K. Cushing, J. Bright, F. Meng, T. R. Senty, P. Zheng, A. D. Bristow and N. Wu, ACS Catal., 2013, 3, 47.
    [43] C.-H. Kuo, T.-E. Hua and M. H. Huang, J. Am. Chem. Soc., 2009, 131, 17871.
    [44] C.-H. Kuo, Y.-C. Yang, S. Gwo and M. H. Huang, J. Am. Chem. Soc., 2011, 133, 1052.
    [45] T. D. Schladt, M. I. Shukoor, K. Schneider, M. N. Tahir,F. Natalio, I. Ament, J. Becker, F. D. Jochum, S. Weber,O. K¨ohler, P. Theato, L. M. Schreiber, C. S¨onnichsen,H. C. Schr¨oder, W. E. G. M¨uller and W. Tremel, Angew. Chem., Int. Ed., 2010, 49, 3976.
    [46] F.-h. Lin and R.-a. Doong, J. Phys. Chem. C, 2011, 115, 6591.
    [47] Z. W. Seh, S. Liu, S.-Y. Zhang, K. W. Shah and M.-Y. Han, Chem. Commun., 2011, 47, 6689.
    [48] H. Sun, J. He, J. Wang, S.-Y. Zhang, C. Liu, T. Sritharan,S. Mhaisalkar, M.-Y. Han, D. Wang and H. Chen, J. Am. Chem. Soc., 2013, 135, 9099.
    [49] N. Zhang, X. Fu and Y.-J. Xu, J. Mater. Chem., 2011, 21, 8152.
    [50] M. Sugiura, Catalysis Surveys from Asia, Vol. 7, pp. 77 (2003).
    [51] X. L. Song, G. Z. Qiu and P. Qu, Rare Metal Materials and Engineering, Vol. 33, pp. 29 (2004).
    [52] P. Patsalas, S. Logothetidis, L. Sygellou and S. Kennou, Physical Review B, Vol. 68, pp. 035104 (2003).
    [53] Y. Liu, Z. Lockman, A. Aziz and J. MacManus-Driscoll, Journal of Physics: Condensed Matter, Vol. 20, pp. 165201 (2008).
    [54] Soshin Chikazumi 著,張煦、李學養譯,“磁性物理學”,聯經出版社,(1982).
    [55] X. Chen, G . Li, Y. Su, X. Qiu, L. Li and Z. Zou, Nanotechnology, Vol. 20, pp. 115606 (2009).
    [56] Z. D. Dohčević-Mitrović, APPLIED PHYSICS LETTERS, Vol.96, pp. 203104 (2010).
    [57] Qi-Ye Wen, Huai-Wu Zhang, Qing-Hui Yang, Yuan-Qiang Song, and John Q. Xiao, Journal of Physics: Condensed Matter, Vol. 19, pp.246205 (2007).
    [58] Shih Yun Chen, J. Phys. Chem. C, Vol. 116, pp. 8707(2012).
    [59] B. E. Warren, X-ray diffraction, 1969.
    [60] Reetz, Manfred T., Wolfgang Helbig, and Stefan A. Quaiser. Chemistry of materials 7.12 ,pp.2227 (1995).
    [61] Gachard, Elisabeth, et al. New journal of chemistry 22.11 pp.1257 (1998).
    [62] T. Yonezawa, T. Sato, S. Kurada, K. Kuge, J. Chem, Soc. Faraday Trans., 87, pp.1905 (1991).
    [63] Mizukoshi, Yoshiteru, et al. The Journal of Physical Chemistry B 101.36, pp.7033 (1997).
    [64] He, Baolin, et al. Journal of Molecular Catalysis A: Chemical 221.1, pp.121 (2004).
    [65] Lavinia Balan, Jean-Pierre Malval, Raphaël Schneider, Dominique Burget, Mat. Chem. Phy., vol. 104, pp.417 (2007).
    [66] G. A. Martı´nez-Castanon, N. Nino-Martınez,F. Martınez-Gutierrez, J. R. Martı´nez-Mendoza, Facundo Ruiz, J Nanopart Res.,Vol.10, pp. 1343 (2008).
    [67] Haw-Yeu Chuang and Dong-Hwang Chen, Nanotechnology, Vol. 20, pp. 105704 (2009).
    [68] Hsien-Tse Tung, Jenn-Ming Song, Yung-Tang Nien and In-Gann Chen, Nanotechnology, Vol. 19, (2008)pp. 455603
    [69] Hsien-Tse Tung, Jenn-Ming Song, Teng-Yuan Dong, Weng-Sing Hwang, and In-Gann Chen, Crystal Growth & Design, Vol. 8, (2008)pp 3415
    [70] Hsien-Tse Tung, In-Gann Chen, Jenn-Ming Song and Cheng-Wei Yen, J. Mater. Chem., Vol 19, pp. 2386 (2009).
    [71] W. S. Liao, T. Yang, E. T. Castellana, S. Kataoka, P. S. Cremer, A rapid prototyping approach to Ag nanoparticle fabrication in the 10-100 nm Range, Adv. Mater., vol. 18, pp.2240. (2006).
    [72] V. Iliev, D. Tomova, L. Bilyarska, G. Tyuliev, J. Mole. Catal. A: Chemical, vol. 263, pp 32 (2007).
    [73] M. Haruta, Catal. Today, Vol 36, pp.153 (1997).
    [74] J.-M. Song, Applied Surface Science, vol. 285, pp 450 (2013).
    [75] S. Phokaa, P. Laokula, E. Swatsitanga, V.Promarakb, S. Seraphinc, and S.Maensiria, Materials Chemistry and Physics, Vol. 115, pp. 423 (2009).
    [76] X. Zhang, D. Zhang, X. Ni, H. Zheng, Chem. Lett., 35, 10, (2006).
    [77] 鄭信民、林麗娟,X光繞射應用簡介,工業材料雜誌,181,100,民國91年
    [78] D. Rickerby and A. Matthews, Blackie & Son Limited, (1991).
    [79] Chen, Yang, and Renwei Long. Applied Surface Science 257.20, pp.8679 (2011).
    [80] 林智仁、羅聖全,場發射穿透式電子顯微鏡簡介,工業材料雜誌,201期,民國92年9月
    [81] 羅聖全、賴明偉,2008 APMC9 看顯微鏡技術發展,材料世界網https://www.materialsnet.com.tw/DocView.aspx?id=7566

    QR CODE