簡易檢索 / 詳目顯示

研究生: 謝岳呈
Yue-Cheng Hsieh
論文名稱: 二硫化鎢單晶與單層奈米結構之光電導特性研究
Photoconductive Properties in WS2 Single Crystals and Monolayer Nanostructures
指導教授: 陳瑞山
Ruei-San Chen
口試委員: 李奎毅
Kuei-Yi Lee
謝雅萍
Ya-Ping Hsieh
黃逸帆
Yi-Fan Huang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 99
中文關鍵詞: 二硫化鎢光電導單晶單層
外文關鍵詞: monolayer, single, crystal, Photoconductive
相關次數: 點閱:285下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


中文摘要 i ABSTRACT ii 誌謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 1 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 2 第二章樣品介紹 3 2.1 二硫化鎢層狀晶體成長 3 2.2 單層二硫化鎢單層成長 4 3 第三章 實驗方法與原理 5 3.1 二硫化鎢晶體檢測 5 3.1.1 拉曼散射光譜儀 (Raman Scattering Spectroscopy) 5 3.1.2 掃描式電子顯微術 (Scanning Electron Microscopy, SEM) 8 3.2 二硫化鎢單層檢測 10 3.2.1 光激發螢光光譜儀 (Photoluminescence Spectrometer) 10 3.2.2 原子力顯微術 (Atomic Force Microscopy) 14 3.3 二硫化鎢層狀半導體塊材元件製作 17 3.3.1 基板製作 17 3.3.2 晶體定位及遮罩製作 18 3.3.3 直流磁控濺鍍法 19 3.3.4 漆包線接合 22 3.4 二硫化鎢層狀半導體單層元件製作 23 3.4.1 二硫化鎢單層遮罩製作與電極濺鍍 23 3.4.2 漆包線接合 24 3.5 二硫化鎢元件暗電導量測 25 3.5.1 電流對電壓曲線量測 (Current-Voltage Measurement) 25 3.6 二硫化鎢元件光電導量測 27 3.6.1 功率相依的光電導量測 (Power-Dependent Photoconductivity Measurement) 27 3.6.2 環境變化之光電導量測 (Ambience-Dependent Photoconductivity Measurement) 28 3.7 二硫化鎢元件之高時間解析光電導量測 30 3.7.1 功率相依之高時間解析光電導量測 (Power-dependent high-frequency time-resolved photoconductivity measurement) 30 3.7.2 溫度變化與環境變化之高時間解析光電導量測 (Temperature-dependent and Ambience-dependent High time-resolved photoconductivity measurement) 34 4 第四章 結果與討論 37 4.1 二硫化鎢塊材晶體結構分析 37 4.1.1 二硫化鎢晶體之拉曼散射光譜 37 4.1.2 二硫化鎢晶體之表面形貌 39 4.2 二硫化鎢單層之結構分析 40 4.2.1 二硫化鎢單層之拉曼散射光譜 40 4.2.2 二硫化鎢單層之光激發螢光光譜 42 4.2.3 二硫化鎢單層之厚度量測 43 4.3 二硫化鎢暗電導分析 44 4.3.1 二硫化鎢塊材之電導率量測 44 4.3.2 二硫化鎢單層之電導率量測 49 4.4 二硫化鎢之光電導分析 51 4.4.1 二硫化鎢塊材之功率相依光電導 52 4.4.2 二硫化鎢塊材之環境相依光電導 53 4.4.3 二硫化鎢單層之波長與功率相依光電導 57 4.4.4 二硫化鎢單層之波長與環境相依光電導 60 4.5 二硫化鎢之高時間解析光電導分析 64 4.5.1 二硫化鎢塊材功率相依之載子活期分析 65 4.5.2 二硫化鎢塊材環境相依之載子活期分析 67 4.5.3 二硫化鎢塊材溫度相依之載子活期分析 68 4.5.4 二硫化鎢單層溫度相依之載子活期分析 71 4.5.5 二硫化鎢單層波長與功率相依之載子活期分析 74 4.5.6 二硫化鎢單層波長與環境相依之載子活期分析 78 5 第五章 結論 81 參考文獻 82

1. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
2. Novoselov, K.S., et al., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences, 2005. 102(30): p. 10451-10453.
3. Kang, M., et al., Universal mechanism of band-gap engineering in transition-metal dichalcogenides. Nano letters, 2017. 17(3): p. 1610-1615.
4. Lv, R., et al., Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single-and few-layer nanosheets. Accounts of chemical research, 2015. 48(1): p. 56-64.
5. Singh, V., et al., Graphene based materials: past, present and future. Progress in materials science, 2011. 56(8): p. 1178-1271.
6. Li, C., et al., Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chemical Society Reviews, 2018. 47(13): p. 4981-5037.
7. Kuc, A., N. Zibouche, and T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2. Physical Review B, 2011. 83(24): p. 245213.
8. Kam, K. and B. Parkinson, Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. The Journal of Physical Chemistry, 1982. 86(4): p. 463-467.
9. Braga, D., et al., Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano letters, 2012. 12(10): p. 5218-5223.
10. Terrones, H., F. López-Urías, and M. Terrones, Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Scientific reports, 2013. 3(1): p. 1-7.
11. Park, J., et al., Synthesis of uniform single layer WS2 for tunable photoluminescence. Scientific reports, 2017. 7(1): p. 1-8.
12. Rodriguez Gutierrez, H., et al. Extraordinary room-temperature photoluminescence in WS 2 monolayers. in APS March Meeting Abstracts. 2013.
13. Ovchinnikov, D., et al., Electrical transport properties of single-layer WS2. ACS nano, 2014. 8(8): p. 8174-8181.
14. Cui, Y., et al., High‐performance monolayer WS2 field‐effect transistors on high‐κ dielectrics. Advanced Materials, 2015. 27(35): p. 5230-5234.
15. Aji, A.S., et al., High mobility WS2 transistors realized by multilayer graphene electrodes and application to high responsivity flexible photodetectors. Advanced Functional Materials, 2017. 27(47): p. 1703448.
16. Phan, N.A.N., et al., Enhanced Performance of WS2 Field‐Effect Transistor through Mono and Bilayer h‐BN Tunneling Contacts. Small, 2022. 18(13): p. 2105753.
17. Iqbal, M.W., et al., High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Scientific reports, 2015. 5(1): p. 1-9.
18. Gong, Y., et al., High flex cycle testing of CVD monolayer WS2 TFTs on thin flexible polyimide. 2D Materials, 2016. 3(2): p. 021008.
19. Reale, F., et al., High-mobility and high-optical quality atomically thin WS 2. Scientific Reports, 2017. 7(1): p. 14911.
20. Lan, C., et al., 2D WS2: from vapor phase synthesis to device applications. Advanced Electronic Materials, 2021. 7(7): p. 2000688.
21. Eftekhari, A., Tungsten dichalcogenides (WS 2, WSe 2, and WTe 2): materials chemistry and applications. Journal of Materials Chemistry A, 2017. 5(35): p. 18299-18325.
22. Zeng, L., et al., High-responsivity UV-Vis photodetector based on transferable WS2 film deposited by magnetron sputtering. Scientific reports, 2016. 6(1): p. 1-8.
23. Withers, F., et al., Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nature materials, 2015. 14(3): p. 301-306.
24. Jo, S., et al., Mono-and bilayer WS2 light-emitting transistors. Nano letters, 2014. 14(4): p. 2019-2025.
25. 沈韋竹, 二硫化鉬及二硫化鎢層狀半導體奈米結構之厚度相依電傳輸特性. 2015, 國立臺灣科技大學光電工程研究所碩士學位論文.
26. 何沁蓉, 二硫化鉬及二硒化鉬層狀半導體奈米結構之高頻時間解析光電導特性. 2019, 國立臺灣科技大學應用科技研究所碩士學位論文.
27. 郭佳紋, 單層二硫化鉬半導體之高頻時間解析光電導特性研究. 2021, 國立臺灣科技大學應用科技研究所碩士學位論文.
28. Siao, M., et al., Two-dimensional electronic transport and surface electron accumulation in MoS2. Nature communications, 2018. 9(1): p. 1-12.
29. Chang, Y., et al., Surface electron accumulation and enhanced hydrogen evolution reaction in MoSe2 basal planes. Nano Energy, 2021. 84: p. 105922.
30. 朱煜文, 二硫化鎢層狀半導體之電子結構與電傳輸特性. 2019, 國立臺灣科技大學應用科技研究所碩士學位論文.
31. Langer, J., et al., Present and future of surface-enhanced Raman scattering. ACS nano, 2019. 14(1): p. 28-117.
32. 吳芳儒, 基於光登伯效應的自供電 狄拉克半金屬 Cd3As2光偵測器元件. 2022, 國立臺灣科技大學光電工程研究所碩士學位論文.
33. Reimer, L., Scanning electron microscopy: physics of image formation and microanalysis. Measurement Science and Technology, 2000. 11(12): p. 1826-1826.
34. Flewitt, P.E. and R.K. Wild, Physical methods for materials characterisation. 2017: CRC Press.
35. Neamen, D.A., Semiconductor physics and devices: basic principles. 2003: McGraw-hill.
36. 林誼承, 單層二硫化鉬半導體之高速與慢速光電導反應機制研究. 2022, 國立臺灣科技大學應用科技研究所碩士學位論文.
37. Feng, B., et al., Error analysis in calculation and interpretation of AFM tip-surface interaction forces. Advances in Colloid and Interface Science, 2022: p. 102710.
38. 王驊民, 二硫化鉬層狀半導體歐姆接觸探討. 2018, 國立臺灣科技大學光電工程研究所碩士學位論文.
39. Binet, F., et al., Mechanisms of recombination in GaN photodetectors. Applied physics letters, 1996. 69(9): p. 1202-1204.
40. Lin, J., et al., Relaxation of persistent photoconductivity in Al 0.3 Ga 0.7 As. Physical Review B, 1990. 42(9): p. 5855.
41. Li, J., et al., Nature of Mg impurities in GaN. Applied physics letters, 1996. 69(10): p. 1474-1476.
42. Berkdemir, A., et al., Identification of individual and few layers of WS2 using Raman Spectroscopy. Scientific reports, 2013. 3(1): p. 1-8.
43. Zobeiri, H., et al., Effect of temperature on Raman intensity of nm-thick WS 2: Combined effects of resonance Raman, optical properties, and interface optical interference. Nanoscale, 2020. 12(10): p. 6064-6078.
44. Kang, S., et al., Bandgap modulation in the two-dimensional core-shell-structured monolayers of WS2. Iscience, 2022. 25(1): p. 103563.
45. do Nascimento Barbosa, A., et al., Luminescence enhancement and Raman characterization of defects in WS2 monolayers treated with low-power N2 plasma. Applied Surface Science, 2021. 535: p. 147685.
46. Gutiérrez, H.R., et al., Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano letters, 2013. 13(8): p. 3447-3454.
47. Yuan, L. and L. Huang, Exciton dynamics and annihilation in WS 2 2D semiconductors. Nanoscale, 2015. 7(16): p. 7402-7408.
48. Muoi, D., et al., Electronic properties of WS2 and WSe2 monolayers with biaxial strain: a first-principles study. Chemical Physics, 2019. 519: p. 69-73.
49. Tanoh, A.O.A., et al., Enhancing photoluminescence and mobilities in WS2 monolayers with oleic acid ligands. Nano Letters, 2019. 19(9): p. 6299-6307.
50. Fatima, T., S. Husain, and M. Khanuja, Superior photocatalytic and electrochemical activity of novel WS2/PANI nanocomposite for the degradation and detection of pollutants: Antibiotic, heavy metal ions, and

無法下載圖示 全文公開日期 2026/02/01 (校內網路)
全文公開日期 2026/02/01 (校外網路)
全文公開日期 2026/02/01 (國家圖書館:臺灣博碩士論文系統)
QR CODE