簡易檢索 / 詳目顯示

研究生: 蔡承峰
Chen-Fong Tsai
論文名稱: 電腦輔助分析重熔矽膜之凝固
Computer Aided Simulation of the Solidification of Re-melted Silicon Film
指導教授: 雷添壽
Tien-Shou Lei
口試委員: 鄭正元
Jeng-Ywan Jeng 
葉文昌
Wen-Chang Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 105
中文關鍵詞:  橫向長晶法 準分子雷射熱處理加工 低溫多晶矽 ProCAST
外文關鍵詞:  Lateral Grain Growth,  Excimer Laser Crystalization,  Low Temperature Polycrystalline Silicon,  ProCAST
相關次數: 點閱:328下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

準分子雷射重熔矽膜是目前加工低溫多晶矽最常見的手法,但在狹小的製程窗口下其複雜的結晶機制,往往難以控制。大多數的製程參數設定都是以試誤法的方式來進行調整。但是在試誤過程中所耗費的人力、資源及時間難以估計。若是能夠以電腦模擬方式代替傳統試誤法作為參數調整的依據,將會大大節省製程所耗費的時間及金錢。
本篇論文運用商業軟體ProCAST來建構一套以有限元素分析法為基礎的電腦輔助模擬方法來分析準分子雷射加工低溫多晶矽的各項參數如:熱傳係數、雷射強度、加熱時間、基材預熱、熱滯留層及熱輻射在一維熱傳下對矽膜重熔的影響。
研究結果顯示模擬技術是可以大大增進研究重熔矽膜機制的方法。研究結果著重於上述製程參數對下述凝固參數的影響:矽膜最高溫度、矽膜下層溫度、融化深度及融化時間。


The complexity and diversity of the mechanics of the crystallization of re-melted silicon film go far beyond one can image. Most researches about silicon crystal growth are achieved through trial-and-error, and by controlling experimental parameters to discover the influence of each variable. Unfortunately, this means spends lots of time, manpower, and money.
A measure based on computer aided simulation of the re-crystallization of silicon film would solve this problem. Through this convenient method engineers could find out the properties of re-crystallized film, simply by running different influencing parameters on computer without real experiments. This paper tried to develop a simulation model utilizing ”ProCAST” commercial package software to examine the influence of following parameters: (1) Conductivity; (2) Excimer Intensity; (3) Pulse Duration; (4) Pre-Heating Substrate; (5) Photosensitive Heat Retained Layer; and finally (6) Radiation on the re-melting of silicon film considering in one-dimension of Z axis.
This simulation technique shows the promise of efficiency to study the characteristics of the solidification of re-melted silicon film. The results were emphasized on following solidification parameters: (a) Maximum Temperature; (b) Temperature of Bottom Layer of Amorphous Silicon Layer; (c) Melting Depth; (d) Melting Duration.

Contents 摘要I ABSTRACTII ACKNOWLEDGEMENTIII CONTENTSIV TABLE CONTENTSVI FIGURE CONTENTSVII CHAPTER 1INTRODUCTION1 1.1RESEARCH BACKGROUND1 1.2RESEARCH PURPOSE2 1.3QUESTION DESCRIPTION3 1.4ASSUMPTIONS4 CHAPTER 2LITERATURE REVIEWING5 2.1LOW TEMPERATURE POLY-CRYSTALLINE SILICON7 2.2EXCIMER LASER8 2.3EXCIMER LASER CRYSTALLIZATION9 2.4EXCIMER LASER CRYSTALLIZATION SYSTEM14 2.5LATERAL GRAIN GROWTH METHODS16 2.6METAL INDUCED LATERAL CRYSTALLIZATION17 2.7FINITE ELEMENT SOFTWARE PROCAST19 CHAPTER 3METHODOLOGY21 3.1RESEARCH FLOW21 3.2PROCAST WORKING FLOW24 3.2.1ProCAST License26 3.2.2Pre-Processing26 3.2.3MsehCAST26 3.2.4PreCAST27 3.2.5Solving29 3.2.6DataCAST / ProCAST29 3.2.7Post- Processing30 3.2.8ViewCAST30 3.3DISCUSSION FLOW32 CHAPTER 4SIMULATION PARAMETERS34 4.1MODEL DESIGNATION34 4.1.1Physical Model34 4.1.2Numerical Model35 4.1.3Element Merging38 4.2BOUNDARY CONDITIONS41 4.3MATERIAL PROPERTIES44 4.3.1Amorphous Silicon45 4.3.2Silicon Oxide46 4.4EXCIMER LASER48 4.4.1Practical situation48 4.4.2Simulated Excimer Laser48 4.5THERMAL CALCULATION51 4.5.1Energy Equation51 4.5.2Phase Transfer53 4.6SIMULATION OF THE EFFECTS OF CONDUCTIVITY57 4.7SIMULATION OF THE EFFECTS OF EXCIMER LASER INTENSITY60 4.8SIMULATION OF THE EFFECTS OF PULSE DURATION61 4.9SIMULATION OF THE EFFECTS OF PRE-HEATING SUBSTRATE63 4.10SIMULATION OF EFFECTS OF PHOTOSENSITIVE HEAT RETAINED LAYER64 4.11SIMULATION OF THE EFFECTS OF RADIATION65 CHAPTER 5RESULT AND DISCUSSION68 5.1THE EFFECTS OF CONDUCTIVITY69 5.2THE EFFECTS OF EXCIMER LASER INTENSITY72 5.3THE EFFECTS OF PULSE DURATION75 5.4THE EFFECTS OF PRE-HEATING SUBSTRATE78 5.5THE EFFECTS OF PHOTOSENSITIVE HEAT RETAINED LAYER86 5.6THE EFFECTS OF RADIATION89 CHAPTER 6CONCLUSIONS94 SUGGESTIONS FOR FUTURE WORK96 REFERENCES97 Table Contents TABLE 2.1 GENERAL EXCIMER LASER10 TABLE 4.1 PROPERTIES OF AMORPHOUS SILICON46 TABLE 4.2 PROPERTIES OF SILICON OXIDE47 TABLE 4.3 EXCIMER LASER GENERATOR49 TABLE 4.4 PARAMETERS FOR EXAMINING THE EFFECT OF CONDUCTIVITY59 TABLE 4.5 PARAMETERS FOR EXAMINING THE EFFECT OF EXCIMER FLUENCE61 TABLE 4.6 PARAMETERS FOR EXAMINING THE EFFECT OF PULSE DURATION63 TABLE 4.7 CONDITIONS FOR EXAMINING PRE-HEATING SUBSTRATE65 TABLE 4.8 CONDITIONS FOR EXAMINING PHOTOSENSITIVE HEAT RETAINED LAYER66 TABLE 4.9 PARAMETERS SETTING FOR EXAMINING THE EFFECT OF RADIATION68 TABLE 5.1 RESULTS OF DIFFERENT MODEL ABOUT CONDUCTIVITY72 TABLE 5.2 RESULTS OF DIFFERENT MODEL ABOUT EXCIMER INTENSITY75 TABLE 5.3 RESULTS OF DIFFERENT MODEL ABOUT PULSE DURATION78 TABLE 5.4 RESULTS OF DIFFERENT MODELS ABOUT PRE-HEATING SUBSTRATE86 TABLE 5.5 RESULTS OF MODELS ABOUT SIMULATING HEAT RETAINED LAYERS89 TABLE 5.6 RESULTS OF DIFFERENT MODEL ABOUT RADIATION94 Figure Contents FIG 2.1THREE TYPES OF SOLIDIFICATION OF SILICON FILM13 FIG 2.2LASER INTENSITY VS GRAIN SIZE13 FIG 2.3EXCIMER LASER CRYSTALLIZATION SYSTEM15 FIG 2.4EXCIMER LASER FOCUS ON SUBSTRATE DRAWING16 FIG 2.5FLUENCE TO FOCAL LENGTH GRAPH17 FIG 2.6LATERAL GRAIN GROWTH METHOD SPECIMEN STRUCTURE18 FIG 2.7LARGE POLY-SI GROWTH IN THE CHANNEL BY ELA OF THE MILC POLY-SI FILM19 FIG 2.8THERMAL CALCULATION IN PROCAST21 FIG 3.1RESEARCH PROCEDURES24 FIG 3.2PROCAST WORKING FLOW26 FIG 3.3OPERATION MENU OF PROCAST26 FIG 3.4MESHCAST OPERATION PROCEDURES28 FIG 3.5PRECAST FUNCTIONS29 FIG 3.6RUN STATUS MENU31 FIG 3.7SNAP SHOT IN VIEWCAST32 FIG 3.8SCAN SHOT IN VIEWCAST33 FIG 3.9DISCUSSION FLOW34 FIG 4.1SPECIMEN FOR EXCIMER LASER CRYSTALLIZATION36 FIG 4.2SPECIMEN SIZE38 FIG 4.3SOLID MESHED MODEL39 FIG 4.4EQUIVALENT MERGING40 FIG 4.5COINCIDENT MERGING41 FIG 4.6NON-COINCIDENT MERGING42 FIG 4.7BOUNDARY CONDITION43 FIG 4.8ASSIGNING SURFACE IN PRECAST44 FIG 4.9INITIAL CONDITION SETTING MENU45 FIG 4.10MATERIAL PROPERTIES SETTING MENU IN PRECAST48 FIG 4.11EXCIMER LASER INTENSITY VS TIME GRAPH50 FIG 4.12PRECAST MENU OF DEFINING EXCIMER LASER (DEFINE SURFACE)51 FIG 4.13HEAT INPUTTING MENU53 FIG 4.14ENTHALPY METHOD55 FIG 4.15TEMPERATURE CURVE CONSIDERING WITHOUT LATENT HEAT56 FIG 4.16TEMPERATURE CURVE CONSIDERING WITH PHASE TRANSFER57 FIG 4.17TEMPERATURE CURVE FOCUS ON THE LATENT HEAT INTERVAL57 FIG 4.18TEMPERATURE DISTRIBUTION AT TIME (K=1KA-SI)59 FIG 4.19TEMPERATURE DISTRIBUTION AT TIME (K=10KA-SI)60 FIG 4.20TEMPERATURE DISTRIBUTION AT TIME (K=100KA-SI)60 FIG 4.21PRECAST MENU OF DEFINING EXCIMER LASER62 FIG 4.22RADIATION DEFINITION MENU68 FIG 5.1TEMPERATURE CURVE OF KA-SI=25 W/M K71 FIG 5.2TEMPERATURE CURVE OF KA-SI=250 W/M K71 FIG 5.3TEMPERATURE CURVE OF KA-SI=2500 W/M K,72 FIG 5.4TEMP. CURVE IN THE SITUATION OF EXCIMER INTENSITY =510 MJ/CM274 FIG 5.5TEMP. CURVE IN THE SITUATION OF EXCIMER INTENSITY =630 MJ/CM274 FIG 5.6TEMP. CURVE IN THE SITUATION OF EXCIMER INTENSITY =75075 FIG 5.7TEMP. CURVE IN THE SITUATION OF PULSE DURATION =125 NS77 FIG 5.8TEMP. CURVE IN THE SITUATION OF PULSE DURATION =250 NS77 FIG 5.9TEMP. CURVE IN THE SITUATION OF PULSE DURATION =375 NS78 FIG 5.10TEMP. CURVE IN THE SITUATION WITHOUT PRE-HEATING ON ADIABATIC BOTTOM OF SIO280 FIG 5.11TEMP. CURVE BETWEEN 1300 ~1500 ℃IN THE SITUATION WITHOUT PRE-HEATING ON ADIABATIC BOTTOM OF SIO280 FIG 5.12TEMP. CURVE IN THE SITUATION OF 250℃ PRE-HEATING ON ADIABATIC BOTTOM OF SIO281 FIG 5.13TEMP. CURVE BETWEEN 1300 ~1500 ℃IN THE SITUATION OF 250℃ PRE-HEATING ON ADIABATIC BOTTOM OF SIO281 FIG 5.14TEMP. CURVE IN THE SITUATION OF 500℃ PRE-HEATING ON ADIABATIC BOTTOM OF SIO282 FIG 5.15TEMP. CURVE BETWEEN 1300 ~1500 ℃ IN THE SITUATION OF 500℃ PRE-HEATING ON ADIABATIC BOTTOM OF SIO282 FIG 5.16TEMP. CURVE IN THE SITUATION WITHOUT PRE-HEATING ON CONSTANT TEMP. BOTTOM AT 23℃ OF SIO283 FIG 5.17TEMP. CURVE BETWEEN 1300 ~1500 ℃ WITHOUT PRE-HEATING ON CONSTANT TEMP. BOTTOM AT 23℃ OF SIO283 FIG 5.18TEMP. CURVE IN THE SITUATION OF 250℃ PRE-HEATING ON CONSTANT TEMP. BOTTOM AT 250℃ OF SIO284 FIG 5.19TEMP. CURVE BETWEEN 1500~1300℃IN THE SITUATION OF 250℃ PRE-HEATING ON CONSTANT TEMP. BOTTOM AT 250℃ OF SIO284 FIG 5.20TEMP. CURVE IN THE SITUATION OF 500℃ PRE-HEATING ON CONSTANT TEMP. BOTTOM AT 500℃ OF SIO285 FIG 5.21TEMP. CURVE BETWEEN 1300 ~ 1500 ℃IN THE SITUATION OF 500℃ PRE-HEATING ON CONSTANT TEMP. BOTTOM AT 500℃ OF SIO285 FIG 5.24TEMPERATURE CURVES COMPARING TO HEAT RETAINED LAYER CASES THAT DEFINED IN KSIO2 =140 W/M K89 FIG 5.28RADIATION, KSIO2 =1.4 W/M K, CROSSOVER OF FIRST AND FIFTH LAYER93

References
[1]張鈞傑、莊景桑、陳志強、陳佳榆,”淺談低溫複晶矽薄膜電晶體面板製造與大面積化之挑戰”,電子月刊第十卷第二期,2004
[2]陳佳斌, “線上光學檢測技術於準分子雷射退火矽膜之再結晶特性研究”, 國立台灣科技大學碩士論文,2005
[3]張建宏,”多晶矽薄膜製程之研究”, 國立成功大學碩士論文,2002
[4]郭烈欣, “以ProCAST模擬多晶矽薄膜橫向長晶製程之研究”,國立台灣科技大學碩士論文,2005
[5]Song, I.H. and M.K. Han, Low temperature poly-Si TFTs for display application, Current Applied Physics, 3, pp.363-366, 2003.
[6]Sameshima,T., S.Usui, and M. Sekiya, , "XeCl Excimer Laser Annealing Used in the Fabrication of Poly-Si TFTs," IEEE Electron Device Letters, 7, pp.276-278, 1986
[7]劉侑宗,”準分子雷射誘發熱滯留輔助結晶技術” ,國立台灣科技大學碩士論文,2004
[8]YEH, Wen-Chang and Masakiro MATSUMURA, “Numerical Calculation of Excimer-Laser-Inuced Lateral-Grain-Crystallization of Silicon Thin-Film,” Jpn. J. Appl. Phys. Vol. 40, Part 1, No. 2A, pp. 492-499, 2001.
[9]YEH, Wen-Chang and Masakiro MATSUMURA, “Effects of a Low-Melting- Point Underlayer on Excimer-Laser-Induced Lateral Crystallization of Poly-Silicon Thin-Film” Jpn. J. Appl. Phys., Vol. 40, Part 1, No. 5A, pp 3096~3100, May, 2001
[10]Park, Kee-Chang, Jae-Hoon Lee, In-Hyuk Song, Sang-Hoon Jung, Min-Koo Han, “Poly-Si thin film transistors fabricated by combining excimer laser annealing and metal induced lateral crystallization” Journal of Non-Crystalline Solids 299-302, 2002
[11]Basu, B. and J. Srinivasan, “Numerical Study of Steady-state Laser Melting Problem,” Int. J. Heat Mass Transfer, Vol. 31, pp. 2331-2338, 1988.
[12]Hsu, S.H., S. Chakravorty and R.Mehrabian, “Rapid Melting and Solidification of a Surface Layer,” Metallurgical Trans. B, Vol. 9B, pp. 221-229, 1978.
[13]Im, J. S., H. J. Kim, M. O. Thompson, ”Phase Transformation Mechanisms Involved in Excimer Laser Crystallization of Amorphous Silicon Films”, Appl. Phys. Lett., Vol. 63, No. 14, 1993.
[14]Im, J. S. and H. J. Kim, ”On the Super Lateral Growth Phenomenon Observed in Excimer Laser-induced Crystallization of Thin Si Films”, Appl. Phys. Lett., Vol. 64, No.17, 1994.
[15]Choi, D.H., E. Sadayuki, O. Sugiura, and M. Matsumura, “Lateral Growth of Poly-Si Film by Excimer Laser and Its Thin Film Transistor Application,” Jpn. J. Appl. Phys, Vol. 33, Part 1, No. 1A, pp.70-74, 1994.
[16]Marmorstein, A., and A. T. Voutsas, “A Systematic Study and Optimization of Parameters Affecting Grain Size and Surface Roughness in Excimer Laser Annealed Polysilicon Thin Films,” J. Appl. Phys., Vol. 82, No. 9, p. 1, 1997.
[17]Gupta, V., H.J. Song, and J.S. Im, “Numerical Analysis of Excimer laser-Induced Melting and Solidification of Thin Si Films,”Applied Physics Letters., Vol. 71, pp.99–101, 1997.
[18]Kudo,T., D.Ichishima, and C.G. Jin,“Simulation of Poly-crystalline Silicon Growth by Pulsed Excimer Laser Annealing,” Materials Research Society, Vol. 617, pp. 161-166, 2000.
[19]Flemings, M. C., “Solidification Processing” McGRAW-HILL Book Company, 1974.
[20]ESI, Software. Pro/Cast User Manual, 2004.
[21]http://periodic.lanl.gov/default.htm, “Silicon Properties” Jan, 2006.
[22]http://web.mit.edu/6.777/www/matprops/, “Amorphous Silicon Properties”, Jan. 2006.
[23]http://en.wikipedia.org/wiki/Stefan-Boltzmann_law, “Blackbody Radiation”, Jan, 2006.

QR CODE