簡易檢索 / 詳目顯示

研究生: 趙廣祺
Kuang-Chi Chao
論文名稱: 改善電性衰退於主動式有機發光二極體新式低溫多晶矽薄膜電晶體畫素設計
Improved Electronic Degradation for Active Matrix Organic Light Emitting Diode with a New LTPS-TFT Pixel Design
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 李志堅
Chih-Chien Li
顏文正
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 102
中文關鍵詞: 有機發光二極體主動式陣列有機發光二極體低溫多晶矽薄膜電晶體
外文關鍵詞: active-matrix-organic light-emitting-diode(AMOLED), LTPS-TFT, Organic Light Emitting Diode (OLED)
相關次數: 點閱:437下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,有機發光二極體平面顯示器已在許多商品中呈現。由於它的色彩飽和度、輕量化、低功耗、反應時間快速以及高對比相較於液晶顯示器都優異許多,儼然成為下一世代顯示器的最佳選擇,在追求高畫面品質的當下,有機發光二極體顯示器私乎是更好的選擇。
    在本論文中,研究補償低溫多晶矽薄膜電晶體之臨界電壓的飄移以及有機發光二極體之亮度衰退應用於有機發光二極體平面顯示器之畫素結構。由於LTPS-TFT製程的關係,導致LTPS-TFT產生特性上的差異,因此造成在玻璃面板上做整合積體電路時臨界電壓的不一致,進而影響整體畫面的不均勻。因此藉由本篇論文提出了新型的畫素電路來補償臨界電壓的差異以及回授電路技術來補償有機發光二極體亮度衰退的問題。其次針對OLED跨壓和亮度衰退的相關性,亦提出源極接法與汲極接法的二個補償電路來做比較。
    首先,提出了一個新的電壓驅動之主動式有機電激發光二極體的補償電路(5T2C),有效的補償臨界電壓的飄移以及OLED的衰退,模擬結果顯示有激電機發光二極體的平均電流錯誤率僅4%,相較於傳統的2T1C畫素結構(30%~70%)大幅度的下降,這將對於驅動電晶體之臨界電壓的影響性有顯著的降低。並且藉由回授結構(5T2C)來改善OLED的衰退,根據模擬的結果可以得知,當OLED臨界電壓因長時間使用而提高時,導通之電流仍然維持穩定,使得亮度可以維持,不會因為OLED跨壓提高而導致電流衰退。接下來提出一5T1C電路,目的在於討論OLED臨界電壓跟導通電流的相關性,依照模擬的結果,有激電機發光二極體的平均電流錯誤率為4~5%,對於OLED在電壓飄移之下電流的錯誤率也只有10%以下,大幅改善元件衰退所造成的影響。
    總而言之,本論文中所提出的二個畫素驅動電路可有效補償低溫多晶矽薄膜電晶體以及有機發光二極體所造成之元件特性的差異,同時明顯的提升有激電機發光二極體之電流的均勻性,相信是未來有機電機發光二極體顯示器之非常適合的畫素結構。


    Since flat panel displays have the following traits: slim profile, light weight, low power consumption, wide viewing angle, full color, etc, they are essential for various applications. Among the numerous different flat panel displays, Organic Light Emitting Diode (OLED) display features high brightness, wide viewing angle, light weight, low power, and producing light by itself, the Display industry is paying particular attention to the OLED display.
    In this thesis, voltage programming methods of driving circuits for active-matrix-organic light-emitting-diode (AMOLED) displays pixel structure that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) have been investigated. This circuit technique has constructed a function that has no relation to the threshold voltage of the driving transistor; this is also the main concept of this thesis. The LTPS-TFT process by ELA enables the LTPS-TFT to produce the characteristic of the mutant problem, causing the threshold voltage variation in every single transistor to differ in the whole panel array. Therefore, in constructing this pixel function, we need to try to solve this problem.
    A new pixel driving scheme and modified circuit to compensate for the threshold voltage shift and OLED degradation have been proposed, which are 5T2C and 5T1C structures, respectively. The 5T2C circuit is first designed to compensate for the threshold voltage shift of the driving TFT. The 5T2C circuit contains a special feedback scheme to sense OLED degradation. Subsequently, by the way of eliminating the relation of driving current and OLED voltage, a comparison is made of the source connect and drain connects for the pixel driving scheme in 5T1C. The simulation results show that 5T2C can successfully compensate the threshold voltage of driving TFT. Because the average error rate of the OLED current is about 4%. The 5T2C pixel circuit is designed to add a p-type TFT as a feedback loop; this can compensate for OLED degradation. The simulation results show that when the OLED voltage increased, the OLED current is also increased to compensate the degradation.
    In conclusion, these two proposed pixel circuits successfully compensate for the threshold voltage variation of the driving TFT, and greatly improve the current uniformity for AMOLED. Therefore, the circuit scheme is a good candidate for future AMOLED panel applications.

    論文摘要 I Abstract III 致謝..............................................................................................................................Ⅳ Table of Contents VII List of Figure…………………………………...……………………………………Ⅸ List of Table…………………………………………………………………………..XI Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Motivation 6 1.3 Organization of this thesis 8 Chapter 2 Fundamental Concepts of an OLED Device and TFT-Backplane 10 2.1 OLED Display Driving Models 10 2.1.1 Fundamental theorem of OLED devices 11 2.1.2 OLED in Passive Matrix Addressing 14 2.1.3 OLED in Active Matrix Addressing 17 2.2 Comparison of a-Si and LTPS TFT in AMOLED Displays 20 2.3 The driving TFT differences 23 Chapter 3 Pixel Driving Method for AMOLED 25 3.1 Introduction 25 3.2 Voltage Programmed Circuits 27 3.3 Current Programmed Circuit 30 3.4 Digital Programmed Circuit 33 Chapter 4 Proposed Feedback Pixel Circuit 35 4.1 Introduction to the circuit background 35 4.2 AIM-SPICE and Poly-Si TFT Model 37 4.3 Propose Feedback Pixel Circuit 39 4.3.1 Circuit Structure and Operation 39 4.3.2 Mechanism of Feedback Loop 48 4.4 Simulation Setup and Results 51 4.4.1 Compensation for the Threshold Voltage Variation of the Driving Transistor 53 4.4.2 Compensation Degradation of the OLED 56 4.4.3 Results discussion 64 Chapter 5 Discussion of Source Free and Source Connect Structures 65 5.1 Comparing Source Free and Source Connect Structures 65 5.2 Proposed 5T1C Structure Pixel Circuit 70 5.3 Simulation Set Up and Result 78 5.3.1 Compensation Threshold Voltage Variation of the Driving Transistor 80 5.3.2 Threshold Voltage relation of OLED 82 Chapter 6 Conclusions and Future Studies 83 6.1 Conclusions 83 6.2 Future works 84 References 85

    References
    [1] J. Snell, K. D. Mackenzie, W. E. Spear, P. G. LeComber, and A. J. Hughes, “Application of amorphous silicon field effect transistors in addressable liquid crystal display panels,” Appl. Phys., Vol. 24, pp. 357-365 (1981).
    [2] M. Pope, H. Kallmann, and P. Magnante, “Electroluminescence in organic crystals,” J. Chem. Phys., Vol. 38, pp. 2042-3043 (1963).
    [3] C. W. Tang and S. A. Vanslyke, “Organic electroluminescent diodes, ” Appl. Phys. Lett., Vol. 51, pp. 913-915 (1987).
    [4] C. Hosokawa, M. Matsuura, M. Eida, K. Fukuoka, H. Tokailin, and T. Kusumoto, “Full-color organic EL display,” in SID Tech. Dig., pp.7–10 (1998).
    [5] C. W. Lin, D. Z. Peng, R. Lee, Y. F. Shih, C. K. Jan, M. H. Hsieh, S. C. Chang, and Y. M. Tsai, “Advanced poly-Si device and circuitry for AMOLED and high-integration AMLCD,” in Int. Display Manufacturing Conf., pp. 315–318 (2005).
    [6] H. Nakamura, C. Hosokawa, and T. Kusumoto, “Transient behavior of organic electroluminescent cells,” in Inorganic and Organic Electroluminescence/EL 96 Berlin, pp. 95-100 (2005).
    [7] S. H. Jung, W. J. Nam, and M. K. Han, “A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in poly-Si TFTs,” IEEE Electron Device Lett., Vol. 25, No. 10, pp. 690–692 (2004).
    [8] Y. H. Tai, B. T. Chen, Y. J. Kuo, C. C. Tsai, K. Y. Chiang, Y. J. Wei, and H. C. Cheng, “A new pixel circuit for driving organic light emitting diodes with low temperature polycrystalline thin film transistors,” J. Display Technol., Vol. 1, No. 1, pp. 100–104 (2005).
    [9] J. H. Lee, J. H. Kim, and M. K. Han, “A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED,” IEEE Electron Device Lett., Vol. 26, No. 12, pp. 897–899 (2005).
    [10] C. L. Lin and Y. C. Chen, “A novel LTPS-TFT pixel circuit compensating for TFT threshold-voltage shift and OLED degradation for AMOLED,” IEEE Electron Device Lett., Vol. 28, No. 2, pp. 129–131 (2007).
    [11] Y. He, R. Hattori, and J. Kanicki, “Four-thin film transistor pixel electrode circuits for active-matrix organic light-emitting displays,” Jpn. J. Appl. Phys., Vol. 40, pp. 1199–1208 (2001).
    [12] M. Mizukami, K. Inukai, H. Yamagata, T. Konuma, T. Nishi, J. Koyama, S. Yamazaki, and T. Tsutsui, “6-bit digital VGA OLED,” in Proc. SID Tech. Dig., pp. 912–915 (2000).
    [13] Y. C. Lin and H. P. D. Shsieh, “Improvement of brightness uniformity by AC driving scheme for AMOLED displays,” IEEE Electron Device Lett., Vol. 25, No. 11, pp. 728–730 (2004).
    [14] P. Pongpun, O. Hwansool, S. Yulong, M. G. Scott, J. Campbell and B. J. Phil, “Role of CsF on electron injection into a conjugated polymer,” Appl. Phys., Vol. 22, pp. 304-310 (2000).
    [15] H. Nakamura, C. Hosokawa, and T. Kusumoto, “Transient behavior of organic electroluminescent cells,” in Inorganic and Organic Electroluminescence/EL 96 Vol. 25, No. 11, Berlin, pp. 95 (2003).
    [16] C. Hosokawa, E. Eida, M. Matsuura, K. Fukuoka, H. Nakamura, and T. Kusumoto, “Organic multicolor EL display with fine pixels,” in Dig. Soc. Information Display Int. Symp., Vol. 28, pp. 1073-1076 (2002).
    [17] S. Xiong, B. Guo, C. Wu, Y. Chen, Y. Hao, Z. Zhou, and H. Yang, “A novel design of sub-frame and current driving method for PM-OLED,” in SID Tech. Dig., pp. 1174-1177 (1998).
    [18] S. J. Kim, and O. K. Kwon, “Low-power driving method and circuit for passive matrix organic electro-luminescent displays,” in Proceedings of International Display Workshops, pp. 1195-1198 (2001).
    [19] R. M. A. Dawson, Z. Shen, D. A. Furst, S. Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, W. A. Barrow, E. Dickey, K. Ping, S. Robinson, C. W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu, and J. C. Sturm, “The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays,” in IEDM Tech. Dig., pp. 875-878 (1998).
    [20] C. C. Wu, C W. Chen, C. L. Lin, and C. J. Yang, “Advanced organic light-emitting devices for enhancing display performances,” IEEE Journal of Display Technology, Vol. 1, No. 2, pp. 248–266 (2005).
    [21] J. J. Lih, C. F. Sung, C. H. Li, T. H. Hsiao, and H. H. Lee, “Comparison of a-Si and poly-Si for AMOLEDs, in SID Tech. Dig., pp. 1504-1507 (2003).
    [22] Y. K. Lee, K. M. Kim, J. I. Ryu, Y. D. Kim, K. H. Yoo, J. Jang, H. Y. Jeong and D. J. Choo, “A comparison between a-Si:H TFT and poly-Si TFT for a pixel in AMOLED,” J. Korean Physical Soc., Vol. 39, pp. 291-295 (2001).
    [23] M. J. Powell, “Charge trapping instabilities in amorphous silicon-silicon nitride thin-film transistors ”, Appl. Phys. Lett. ,Vol.43, No.6, pp.597-599 (1998).
    [24] R. A. Street and C. C. Tsai, “Fast and slow states at the interface of amorphous silicon and silicon nitride,” Appl. Phys. Lett., Vol.48, No.24, pp.1672-1674 (1986).
    [25] R. E. I. Schropp and J. F. Verwey, “Instability mechanism in hydrogenated amorphous silicon thin-film transistors,” Appl. Phys. Lett., Vol.50, No.26, pp.185-187 (1987).
    [26] A. R. Hepbum, J. M. Marshall, C. Main, M, J. Powell, and C. V. Berkel, “Metastable defects in amorphous-silicon thin film transistors”, Appl. Phys. Lett., Vol.56, No.20, pp. 2215-2218 (1999).
    [27] S. J. Kim, and O. K. Kwon, “Low-temperature polysilicon thin-film transistor driving with integrated driver for high-resolution light emitting polymer display,” IEEE Trans. Electron Devices, Vol. 46, No. 21, pp.2282-2288 (1999).
    [28] M. Nakai, H. Fujii, T. Tsujioka, Y. Hamada and H. Takahashi, “Degradation of organic layers of organic light emitting devices by continuous operation,” Jpn. J. Appl. Phys., Vol. 41, pp. 881-884 (2002).
    [29] R. Dawson, Z. Shen, D. A. Furest, S. Connor, J. Hsu, M. G. Kane, R.G. Stewart, A. Ipri, C. N. King, P. J. Green, R.T. Flegal, S. Pearson, W.A. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu, and J.C. Sturm, “The Impact of the Transient Response of Orgarnic Light Emitting Diodes on the Design of Active Matrix OLED Displays”, IEEE International Electron Device Meeting, p. 875 (1998).
    [30] M. Stewart, R. S. Howell, L. Pires, M. K. Hatalis, W. Howard, and O. Parche, “Polysilicon VGA active matrix OLED displays—Technology and performance,” in IEDM Tech. Dig., pp. 871–874 (1998).
    [31] C. Hosokawa, M. Matsuura, M. Eida, K. Fukuoka, H. Tokailin, and T. Kusumoto, “Full-color organic EL display,” in SID Tech. Dig., pp. 7–10 (1998).
    [32] M. Kimura, I. Yudasaka, S. Kanbe, H. Kobayashi, H. Kiguchi, S. I. Seki, S. Miyashita, T. Shimoda, T. Ozawa, K. Kitawada, T. Nakazawa, W. Miyazawa, and H. Ohshima, “Low-temperature polysilicon thin-film transistor driving with integrated driver for high-resolution light emitting polymer display,” IEEE Trans. Electron Devices, Vol. 46,No. 12, pp. 2282–2288 (1999).
    [33] Y. H. Tai, B. T. Chen, Y. J. Kuo, C. C. Tsai, K. Y. Chiang, Y. J. Wei, and H. C. Cheng, “A new pixel circuit for driving organic light emitting diodes with low temperature polycrystalline thin film transistors,” J. Display Technol., Vol. 1, No. 1, pp. 100–104 (2005).
    [34] J. H. Lee, J. H. Kim, andM. K. Han, “A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED,” IEEE Electron Device Lett., Vol. 26, No. 12, pp. 897–899 (2005).
    [35] J. H. Lee, W. J. Nam, S. H. Jung, and M. K. Han, “A new current scaling pixel circuit for AMOLED,” IEEE Electron Device Lett., Vol. 25, No. 5, pp. 280–282 (2004).
    [36] J. H. Lee, W. J. Nam, S. M. Han, and M. K. Han, “OLED pixel design employing novel current scaling scheme”, SID, International Symp. Proc., p.490 (2003)
    [37] M. Bagheri, A. J. Ashtiani, A. Nathan, “Fast voltage programmed pixel architecture for AMOLED displays”, Journal Of Display Technology, Vol. 6, No. 5, pp. 315-320 (2010).
    [38] J. H. Lee, W. J. Nam, S. M. Han and M. K. Han, “OLED pixel design employing a novel current scaling scheme,” in SID Tech. Dig., pp. 490-493 (2003).
    [39] J. H. Jang, M. Kwon, E. Tjandranegara, K. Lee, and B. Jung, “A PDM-based digital driving technique using delta-sigma(ΔΣ) modulation for QVGA full-color AMOLED display applications” Journal of Display Technology, Vol. 6, No. 7, pp. 342-249 (2010).
    [40] H. J. In and O. K. Kwon, “Simple pixel using video data correction method for nonuniform electrical characteristics of polycrystalline silicon thin-film transistors and differential aging phenomenon of organic light-emitting diodes,” Japanese journal of applied physics Vol. 49, No. 6, pp. 218-225 (2010).
    [41] C. L. lin, and K. C. Liao, “A novel top emission pixel circuit compensating for tft threshold voltage variation and luminance degradation of OLED,” IEEE conference on Electron Letter and Solid-State Circuit, pp. 23-28 (2007).
    [42] C. L. Fan, H. L. Lai and J. Y. Chang, “Improvement in Brightness Uniformity by Compensating for the Threshold Voltages of Both the Driving Thin-Film Transistor and the Organic Light-Emitting Diode for Active-Matrix Organic Light-Emitting Diode Displays,” Japanese Journal of Applied Physics Vol.49, (2010) .
    [43] C. L. Fan, Y. Y. Lin, J. Y. Chang, B. J. Sun, and Y. W. Liu,” A New Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuit for Active Matrix Organic Light Emitting Diode,” Japanese Journal of Applied Physics Vol.49, (2010).
    [44] Y. J. Park, M. H. Jung, S. H. Park, and O. Kim, “Voltage Programming Based Pixel Circuit to Compensate for Threshold Voltage and Mobility Using Natural capacitance of Organic light emitting diode,” Japanese Journal of Applied Physics Vol.49, (2010).
    [45] B. Hekmatshoar, A. Z. Kattamis, K. Cherenack, S. Wagner, J.C. Sturm, “Novel Amorphous-Si AMOLED Pixels with OLED-independent Turn-on Voltage and Driving Current,” Device Research Conference, pp. 10-13 (2007).

    無法下載圖示 全文公開日期 2016/07/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE